Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites

1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-10, Vol.8 (10), p.e75338
Hauptverfasser: Tuohimaa, Pentti, Wang, Jing-Huan, Khan, Sofia, Kuuslahti, Marianne, Qian, Kui, Manninen, Tommi, Auvinen, Petri, Vihinen, Mauno, Lou, Yan-Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e75338
container_title PloS one
container_volume 8
creator Tuohimaa, Pentti
Wang, Jing-Huan
Khan, Sofia
Kuuslahti, Marianne
Qian, Kui
Manninen, Tommi
Auvinen, Petri
Vihinen, Mauno
Lou, Yan-Ru
description 1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1 (-/-)), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1 (-/-). By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.
doi_str_mv 10.1371/journal.pone.0075338
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1440313175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b2d268de62594e819e74d23a0bc30cb4</doaj_id><sourcerecordid>3093582291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4418-553fd49d98e4605e0270fbee41d8adc66409a2de42ff7a78e50ebfee6fe63f343</originalsourceid><addsrcrecordid>eNp1Ustu1DAUtRCIloE_QGCJ9Qx-xUk2SKhAqVSJDawtJ76e8cixB9uZwg_0u5swadUuWNnyPY_ro4PQW0o2lNf04z6OKWi_OcQAG0LqivPmGTqnLWdryQh__uh-hl7lvCek4o2UL9EZE5RKwutzdHsJATD8OSTI2cWADyla5yFjF_BuHHTAOhg8xDHDNHODTn9xD97nGXl0BnCAmwmc3XZXZlaJuOwAG2ctJAjFaY91XybtjKPFR1f0MGl_4XiAorvoXYH8Gr2w2md4s5wr9Ovb158X39fXPy6vLj5fr3shaLOuKm6NaE3bgJCkAsJqYjsAQU2jTS-lIK1mBgSzttZ1AxWBzgJIC5JbLvgKvT_pHnzMaokwKyoE4ZTTKcQVujohTNR7tfxYRe3Uv4eYtkqn4noPqmOGycaAZFUroKEt1MIwrknXc9J3s9unxW3sBjD9lEbS_ono00lwO7WNR8XrlrWynQQ-LAIp_h4hl_-sLE6oPsWcE9gHB0rU3JV7lpq7opauTLR3j7d7IN2Xg98BmObAtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440313175</pqid></control><display><type>article</type><title>Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tuohimaa, Pentti ; Wang, Jing-Huan ; Khan, Sofia ; Kuuslahti, Marianne ; Qian, Kui ; Manninen, Tommi ; Auvinen, Petri ; Vihinen, Mauno ; Lou, Yan-Ru</creator><contributor>Slominski, Andrzej T.</contributor><creatorcontrib>Tuohimaa, Pentti ; Wang, Jing-Huan ; Khan, Sofia ; Kuuslahti, Marianne ; Qian, Kui ; Manninen, Tommi ; Auvinen, Petri ; Vihinen, Mauno ; Lou, Yan-Ru ; Slominski, Andrzej T.</creatorcontrib><description>1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1 (-/-)), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1 (-/-). By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0075338</identifier><identifier>PMID: 24116037</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amyotrophic lateral sclerosis ; Animals ; Annotations ; Bioinformatics ; Biotechnology ; Bone remodeling ; Calcifediol - pharmacology ; Calcitriol - pharmacology ; Calcium ; Calcium homeostasis ; Cancer ; Cell cycle ; Cell Cycle - drug effects ; Cell death ; Cell differentiation ; Cell Differentiation - drug effects ; Cell growth ; Cholecalciferol - metabolism ; Cholecalciferol - pharmacology ; Deoxyribonucleic acid ; Differentiation (biology) ; Dihydroxyvitamin D3 ; DNA ; DNA microarrays ; Endocrine system ; Epigenetics ; Ethanol ; Experiments ; Fibroblasts ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Gene expression ; Gene Expression - drug effects ; Gene Expression Profiling ; Genes ; Homeostasis ; Hormones ; Humans ; Hydroxylase ; Hydroxylation ; Immunomodulation ; Kinases ; Laboratory animals ; Leukemia ; Medical schools ; Medical treatment ; Membrane proteins ; Metabolites ; Mice ; Mice, Knockout ; Prostate ; Proteins ; Signal transduction ; Stromal Cells - drug effects ; Stromal Cells - metabolism ; Transcription ; Vitamin D3</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e75338</ispartof><rights>2013 Tuohimaa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Tuohimaa et al 2013 Tuohimaa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4418-553fd49d98e4605e0270fbee41d8adc66409a2de42ff7a78e50ebfee6fe63f343</citedby><cites>FETCH-LOGICAL-c4418-553fd49d98e4605e0270fbee41d8adc66409a2de42ff7a78e50ebfee6fe63f343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792969/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792969/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24116037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Slominski, Andrzej T.</contributor><creatorcontrib>Tuohimaa, Pentti</creatorcontrib><creatorcontrib>Wang, Jing-Huan</creatorcontrib><creatorcontrib>Khan, Sofia</creatorcontrib><creatorcontrib>Kuuslahti, Marianne</creatorcontrib><creatorcontrib>Qian, Kui</creatorcontrib><creatorcontrib>Manninen, Tommi</creatorcontrib><creatorcontrib>Auvinen, Petri</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Lou, Yan-Ru</creatorcontrib><title>Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1 (-/-)), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1 (-/-). By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Animals</subject><subject>Annotations</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Bone remodeling</subject><subject>Calcifediol - pharmacology</subject><subject>Calcitriol - pharmacology</subject><subject>Calcium</subject><subject>Calcium homeostasis</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell death</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell growth</subject><subject>Cholecalciferol - metabolism</subject><subject>Cholecalciferol - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation (biology)</subject><subject>Dihydroxyvitamin D3</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>Endocrine system</subject><subject>Epigenetics</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>Fibroblasts</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Homeostasis</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Hydroxylation</subject><subject>Immunomodulation</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Leukemia</subject><subject>Medical schools</subject><subject>Medical treatment</subject><subject>Membrane proteins</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Stromal Cells - drug effects</subject><subject>Stromal Cells - metabolism</subject><subject>Transcription</subject><subject>Vitamin D3</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ustu1DAUtRCIloE_QGCJ9Qx-xUk2SKhAqVSJDawtJ76e8cixB9uZwg_0u5swadUuWNnyPY_ro4PQW0o2lNf04z6OKWi_OcQAG0LqivPmGTqnLWdryQh__uh-hl7lvCek4o2UL9EZE5RKwutzdHsJATD8OSTI2cWADyla5yFjF_BuHHTAOhg8xDHDNHODTn9xD97nGXl0BnCAmwmc3XZXZlaJuOwAG2ctJAjFaY91XybtjKPFR1f0MGl_4XiAorvoXYH8Gr2w2md4s5wr9Ovb158X39fXPy6vLj5fr3shaLOuKm6NaE3bgJCkAsJqYjsAQU2jTS-lIK1mBgSzttZ1AxWBzgJIC5JbLvgKvT_pHnzMaokwKyoE4ZTTKcQVujohTNR7tfxYRe3Uv4eYtkqn4noPqmOGycaAZFUroKEt1MIwrknXc9J3s9unxW3sBjD9lEbS_ono00lwO7WNR8XrlrWynQQ-LAIp_h4hl_-sLE6oPsWcE9gHB0rU3JV7lpq7opauTLR3j7d7IN2Xg98BmObAtw</recordid><startdate>20131008</startdate><enddate>20131008</enddate><creator>Tuohimaa, Pentti</creator><creator>Wang, Jing-Huan</creator><creator>Khan, Sofia</creator><creator>Kuuslahti, Marianne</creator><creator>Qian, Kui</creator><creator>Manninen, Tommi</creator><creator>Auvinen, Petri</creator><creator>Vihinen, Mauno</creator><creator>Lou, Yan-Ru</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131008</creationdate><title>Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites</title><author>Tuohimaa, Pentti ; Wang, Jing-Huan ; Khan, Sofia ; Kuuslahti, Marianne ; Qian, Kui ; Manninen, Tommi ; Auvinen, Petri ; Vihinen, Mauno ; Lou, Yan-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4418-553fd49d98e4605e0270fbee41d8adc66409a2de42ff7a78e50ebfee6fe63f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Animals</topic><topic>Annotations</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Bone remodeling</topic><topic>Calcifediol - pharmacology</topic><topic>Calcitriol - pharmacology</topic><topic>Calcium</topic><topic>Calcium homeostasis</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell death</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell growth</topic><topic>Cholecalciferol - metabolism</topic><topic>Cholecalciferol - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation (biology)</topic><topic>Dihydroxyvitamin D3</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>Endocrine system</topic><topic>Epigenetics</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>Fibroblasts</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Homeostasis</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Hydroxylation</topic><topic>Immunomodulation</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Leukemia</topic><topic>Medical schools</topic><topic>Medical treatment</topic><topic>Membrane proteins</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Stromal Cells - drug effects</topic><topic>Stromal Cells - metabolism</topic><topic>Transcription</topic><topic>Vitamin D3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuohimaa, Pentti</creatorcontrib><creatorcontrib>Wang, Jing-Huan</creatorcontrib><creatorcontrib>Khan, Sofia</creatorcontrib><creatorcontrib>Kuuslahti, Marianne</creatorcontrib><creatorcontrib>Qian, Kui</creatorcontrib><creatorcontrib>Manninen, Tommi</creatorcontrib><creatorcontrib>Auvinen, Petri</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Lou, Yan-Ru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuohimaa, Pentti</au><au>Wang, Jing-Huan</au><au>Khan, Sofia</au><au>Kuuslahti, Marianne</au><au>Qian, Kui</au><au>Manninen, Tommi</au><au>Auvinen, Petri</au><au>Vihinen, Mauno</au><au>Lou, Yan-Ru</au><au>Slominski, Andrzej T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-08</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e75338</spage><pages>e75338-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1 (-/-)), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1 (-/-). By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24116037</pmid><doi>10.1371/journal.pone.0075338</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-10, Vol.8 (10), p.e75338
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1440313175
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amyotrophic lateral sclerosis
Animals
Annotations
Bioinformatics
Biotechnology
Bone remodeling
Calcifediol - pharmacology
Calcitriol - pharmacology
Calcium
Calcium homeostasis
Cancer
Cell cycle
Cell Cycle - drug effects
Cell death
Cell differentiation
Cell Differentiation - drug effects
Cell growth
Cholecalciferol - metabolism
Cholecalciferol - pharmacology
Deoxyribonucleic acid
Differentiation (biology)
Dihydroxyvitamin D3
DNA
DNA microarrays
Endocrine system
Epigenetics
Ethanol
Experiments
Fibroblasts
Fibroblasts - drug effects
Fibroblasts - metabolism
Gene expression
Gene Expression - drug effects
Gene Expression Profiling
Genes
Homeostasis
Hormones
Humans
Hydroxylase
Hydroxylation
Immunomodulation
Kinases
Laboratory animals
Leukemia
Medical schools
Medical treatment
Membrane proteins
Metabolites
Mice
Mice, Knockout
Prostate
Proteins
Signal transduction
Stromal Cells - drug effects
Stromal Cells - metabolism
Transcription
Vitamin D3
title Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiles%20in%20human%20and%20mouse%20primary%20cells%20provide%20new%20insights%20into%20the%20differential%20actions%20of%20vitamin%20D3%20metabolites&rft.jtitle=PloS%20one&rft.au=Tuohimaa,%20Pentti&rft.date=2013-10-08&rft.volume=8&rft.issue=10&rft.spage=e75338&rft.pages=e75338-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0075338&rft_dat=%3Cproquest_plos_%3E3093582291%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440313175&rft_id=info:pmid/24116037&rft_doaj_id=oai_doaj_org_article_b2d268de62594e819e74d23a0bc30cb4&rfr_iscdi=true