Ligand pose and orientational sampling in molecular docking
Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of t...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-10, Vol.8 (10), p.e75992-e75992 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e75992 |
---|---|
container_issue | 10 |
container_start_page | e75992 |
container_title | PloS one |
container_volume | 8 |
creator | Coleman, Ryan G Carchia, Michael Sterling, Teague Irwin, John J Shoichet, Brian K |
description | Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E) benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10) to 4×10(10) to 1×10(11) to 2×10(11) to 5×10(11) mean atoms scored per target, since multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field. |
doi_str_mv | 10.1371/journal.pone.0075992 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1438700433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478446651</galeid><doaj_id>oai_doaj_org_article_449bbb492a704939a085db2a723218ec</doaj_id><sourcerecordid>A478446651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-199f1ee41c0adf4bb28c834253ee15bfc22dd8c8eac187ab058ffb80edf6d0833</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlqmyAIy-LHwMKCX7chTU47GdNmNmlF_72p012msheSiyQnz3mTc_Jm2VOM1phW-M3Oj6FXbr33PawRqgohyL3sFAtKViVB9P7R-iR7FOMOoYLysnyYnRCGBGeYnWZvL22repPvfYR8WvhgoR_UYH0Sz6Pq9s72bW77vPMO9OhUyI3XP1LwcfagUS7Ck3k-y759eP_14tPq8urj5uL8cqWrgg8rLESDARjWSJmG1TXhmlNGCgqAi7rRhBiTQqA05pWqUcGbpuYITFMaxCk9y54fdPfORznXHSVmlFcIMToRmwNhvNrJfbCdCr-lV1b-DfjQShUGqx1IxkRd10wQVSEmqFCIF6ZOO0IJ5qCT1rv5trHuwOjUjaDcQnR50tutbP1PSSteibJKAq9mgeCvR4iD7GzU4JzqwY_TuxlluKSYJPTFP-jd1c1Uq1IBtm98uldPovKcVZyxsixwotZ3UGkY6KxOJmlsii8SXi8SEjPAr6FVY4xy8-Xz_7NX35fsyyN2C8oN2-jdOFkqLkF2AHXwMQZobpuMkZw8ftMNOXlczh5Pac-OP-g26cbU9A_nfvYX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1438700433</pqid></control><display><type>article</type><title>Ligand pose and orientational sampling in molecular docking</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Coleman, Ryan G ; Carchia, Michael ; Sterling, Teague ; Irwin, John J ; Shoichet, Brian K</creator><contributor>Romesberg, Floyd</contributor><creatorcontrib>Coleman, Ryan G ; Carchia, Michael ; Sterling, Teague ; Irwin, John J ; Shoichet, Brian K ; Romesberg, Floyd</creatorcontrib><description>Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E) benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10) to 4×10(10) to 1×10(11) to 2×10(11) to 5×10(11) mean atoms scored per target, since multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0075992</identifier><identifier>PMID: 24098414</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Automation ; Binding sites ; Computational chemistry ; Computer Graphics ; Decoys ; Electrostatic properties ; Electrostatics ; Enrichment ; Genetic algorithms ; Health screening ; Ligands ; Medical screening ; Molecular chains ; Molecular Conformation ; Molecular docking ; Molecular Docking Simulation - methods ; Pharmaceuticals ; Pharmacy ; Phenols - chemistry ; Phenols - metabolism ; Proteins ; Sampling ; Sampling techniques ; Stochasticity ; Test procedures ; Thermodynamics</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e75992-e75992</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Coleman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Coleman et al 2013 Coleman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-199f1ee41c0adf4bb28c834253ee15bfc22dd8c8eac187ab058ffb80edf6d0833</citedby><cites>FETCH-LOGICAL-c758t-199f1ee41c0adf4bb28c834253ee15bfc22dd8c8eac187ab058ffb80edf6d0833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24098414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Romesberg, Floyd</contributor><creatorcontrib>Coleman, Ryan G</creatorcontrib><creatorcontrib>Carchia, Michael</creatorcontrib><creatorcontrib>Sterling, Teague</creatorcontrib><creatorcontrib>Irwin, John J</creatorcontrib><creatorcontrib>Shoichet, Brian K</creatorcontrib><title>Ligand pose and orientational sampling in molecular docking</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E) benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10) to 4×10(10) to 1×10(11) to 2×10(11) to 5×10(11) mean atoms scored per target, since multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Binding sites</subject><subject>Computational chemistry</subject><subject>Computer Graphics</subject><subject>Decoys</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Enrichment</subject><subject>Genetic algorithms</subject><subject>Health screening</subject><subject>Ligands</subject><subject>Medical screening</subject><subject>Molecular chains</subject><subject>Molecular Conformation</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation - methods</subject><subject>Pharmaceuticals</subject><subject>Pharmacy</subject><subject>Phenols - chemistry</subject><subject>Phenols - metabolism</subject><subject>Proteins</subject><subject>Sampling</subject><subject>Sampling techniques</subject><subject>Stochasticity</subject><subject>Test procedures</subject><subject>Thermodynamics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlqmyAIy-LHwMKCX7chTU47GdNmNmlF_72p012msheSiyQnz3mTc_Jm2VOM1phW-M3Oj6FXbr33PawRqgohyL3sFAtKViVB9P7R-iR7FOMOoYLysnyYnRCGBGeYnWZvL22repPvfYR8WvhgoR_UYH0Sz6Pq9s72bW77vPMO9OhUyI3XP1LwcfagUS7Ck3k-y759eP_14tPq8urj5uL8cqWrgg8rLESDARjWSJmG1TXhmlNGCgqAi7rRhBiTQqA05pWqUcGbpuYITFMaxCk9y54fdPfORznXHSVmlFcIMToRmwNhvNrJfbCdCr-lV1b-DfjQShUGqx1IxkRd10wQVSEmqFCIF6ZOO0IJ5qCT1rv5trHuwOjUjaDcQnR50tutbP1PSSteibJKAq9mgeCvR4iD7GzU4JzqwY_TuxlluKSYJPTFP-jd1c1Uq1IBtm98uldPovKcVZyxsixwotZ3UGkY6KxOJmlsii8SXi8SEjPAr6FVY4xy8-Xz_7NX35fsyyN2C8oN2-jdOFkqLkF2AHXwMQZobpuMkZw8ftMNOXlczh5Pac-OP-g26cbU9A_nfvYX</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Coleman, Ryan G</creator><creator>Carchia, Michael</creator><creator>Sterling, Teague</creator><creator>Irwin, John J</creator><creator>Shoichet, Brian K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131001</creationdate><title>Ligand pose and orientational sampling in molecular docking</title><author>Coleman, Ryan G ; Carchia, Michael ; Sterling, Teague ; Irwin, John J ; Shoichet, Brian K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-199f1ee41c0adf4bb28c834253ee15bfc22dd8c8eac187ab058ffb80edf6d0833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Binding sites</topic><topic>Computational chemistry</topic><topic>Computer Graphics</topic><topic>Decoys</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Enrichment</topic><topic>Genetic algorithms</topic><topic>Health screening</topic><topic>Ligands</topic><topic>Medical screening</topic><topic>Molecular chains</topic><topic>Molecular Conformation</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation - methods</topic><topic>Pharmaceuticals</topic><topic>Pharmacy</topic><topic>Phenols - chemistry</topic><topic>Phenols - metabolism</topic><topic>Proteins</topic><topic>Sampling</topic><topic>Sampling techniques</topic><topic>Stochasticity</topic><topic>Test procedures</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, Ryan G</creatorcontrib><creatorcontrib>Carchia, Michael</creatorcontrib><creatorcontrib>Sterling, Teague</creatorcontrib><creatorcontrib>Irwin, John J</creatorcontrib><creatorcontrib>Shoichet, Brian K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, Ryan G</au><au>Carchia, Michael</au><au>Sterling, Teague</au><au>Irwin, John J</au><au>Shoichet, Brian K</au><au>Romesberg, Floyd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand pose and orientational sampling in molecular docking</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e75992</spage><epage>e75992</epage><pages>e75992-e75992</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys-Enhanced (DUD-E) benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20,000 molecular orientations in the binding site (and so from about 1×10(10) to 4×10(10) to 1×10(11) to 2×10(11) to 5×10(11) mean atoms scored per target, since multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24098414</pmid><doi>10.1371/journal.pone.0075992</doi><tpages>e75992</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-10, Vol.8 (10), p.e75992-e75992 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1438700433 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Automation Binding sites Computational chemistry Computer Graphics Decoys Electrostatic properties Electrostatics Enrichment Genetic algorithms Health screening Ligands Medical screening Molecular chains Molecular Conformation Molecular docking Molecular Docking Simulation - methods Pharmaceuticals Pharmacy Phenols - chemistry Phenols - metabolism Proteins Sampling Sampling techniques Stochasticity Test procedures Thermodynamics |
title | Ligand pose and orientational sampling in molecular docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand%20pose%20and%20orientational%20sampling%20in%20molecular%20docking&rft.jtitle=PloS%20one&rft.au=Coleman,%20Ryan%20G&rft.date=2013-10-01&rft.volume=8&rft.issue=10&rft.spage=e75992&rft.epage=e75992&rft.pages=e75992-e75992&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0075992&rft_dat=%3Cgale_plos_%3EA478446651%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1438700433&rft_id=info:pmid/24098414&rft_galeid=A478446651&rft_doaj_id=oai_doaj_org_article_449bbb492a704939a085db2a723218ec&rfr_iscdi=true |