Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway

Fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis, is subject to metabolic regulation. The human muscle isozyme is significantly more sensitive towards the allosteric inhibitor, AMP, than the liver isoform. Here we report crystal structures and kinetic studies for wild-type human muscle F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS One 2013-09, Vol.8 (9), p.e71242-e71242
Hauptverfasser: Shi, Rong, Chen, Ze-Yong, Zhu, Dao-Wei, Li, Chunmin, Shan, Yufei, Xu, Genjun, Lin, Sheng-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e71242
container_issue 9
container_start_page e71242
container_title PLoS One
container_volume 8
creator Shi, Rong
Chen, Ze-Yong
Zhu, Dao-Wei
Li, Chunmin
Shan, Yufei
Xu, Genjun
Lin, Sheng-Xiang
description Fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis, is subject to metabolic regulation. The human muscle isozyme is significantly more sensitive towards the allosteric inhibitor, AMP, than the liver isoform. Here we report crystal structures and kinetic studies for wild-type human muscle Fru-1,6-Pase, the AMP-bound (1.6 Å), and product-bound complexes of the Q32R mutant, which was firstly introduced by an error in the cloning. Our high-resolution structure reveals for the first time that the higher sensitivity of the muscle isozyme towards AMP originates from an additional water-mediated, H-bonded network established between AMP and the binding pocket. Also present in our structures are a metaphosphate molecule, alternate conformations of Glu97 coordinating Mg(2+), and possible metal migration during catalysis. Although the individual subunit is similar to previously reported Fru-1,6-Pase structures, the tetrameric assembly of all these structures deviates from the canonical R- or T-states, representing novel tetrameric assemblies. Intriguingly, the concentration of AMP required for 50% inhibition of the Q32R mutant is increased 19-fold, and the cooperativity of both AMP and Mg(2+) is abolished or decreased. These structures demonstrate the Q32R mutation affects the conformations of both N-terminal residues and the dynamic loop 52-72. Also importantly, structural comparison indicates that this mutation in helix α2 is detrimental to the R-to-T conversion as evidenced by the absence of quaternary structural changes upon AMP binding, providing direct evidence for the critical role of helix α2 in the allosteric signal transduction.
doi_str_mv 10.1371/journal.pone.0071242
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1437343702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af9e11f40e7d44338386d4f0696fcf4e</doaj_id><sourcerecordid>1443399185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-65dfd7244465cc7140b7f2a5d2dbd82126e33942b742428b67ab22ee71653343</originalsourceid><addsrcrecordid>eNptUstuEzEUHSEQLYU_QGDBhkUS_Bp7pgukKuJRqQgW3Vsez3XG0cRObU9RfoWvxSFp1SIWli3fc8895-hW1WuCF4RJ8nEdpuj1uNgGDwuMJaGcPqlOScvoXFDMnj54n1QvUlpjXLNGiOfVCeW4EbTGp9XvZdylrEeUcpxMniIkFCwapo32aDMlMwKy-0pIMCczMe9c2g6hHJ11gnPkwy2M6GbSGYqcuCtE5ZlmCPygvYEeXXz_ibS1zru8myHte6THMaSCdwYltyomUI7ap41LyQWPtjoPv_TuZfXM6jHBq-N9Vl1_-Xy9_Da_-vH1cnlxNTd1zfJc1L3tJeWci9oYSTjupKW67mnf9Q0lVABjLaed5CWhphNSd5QCSCJqxjg7q94eaLdFlDqmmhThTJaqxLQgLg-IPui12ka3KT5V0E79_QhxpXTMrkSltG2BEMsxyJ5zxpoSeM8tFq2wxnIoXJ-O06ZuA70BX6yPj0gfV7wb1CrcKiabmsumELw7EJQEnUrGZTCDCd6DyYrgVmCJC-jDcUoMNxOkrEq2BsZRewjT3lzR1rakqQv0_T_Q_0fADygTQ0oR7L1igtV-He-61H4d1XEdS9ubh27vm-72j_0BPOvgKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437343702</pqid></control><display><type>article</type><title>Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shi, Rong ; Chen, Ze-Yong ; Zhu, Dao-Wei ; Li, Chunmin ; Shan, Yufei ; Xu, Genjun ; Lin, Sheng-Xiang</creator><contributor>Hofmann, Andreas</contributor><creatorcontrib>Shi, Rong ; Chen, Ze-Yong ; Zhu, Dao-Wei ; Li, Chunmin ; Shan, Yufei ; Xu, Genjun ; Lin, Sheng-Xiang ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; Hofmann, Andreas</creatorcontrib><description>Fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis, is subject to metabolic regulation. The human muscle isozyme is significantly more sensitive towards the allosteric inhibitor, AMP, than the liver isoform. Here we report crystal structures and kinetic studies for wild-type human muscle Fru-1,6-Pase, the AMP-bound (1.6 Å), and product-bound complexes of the Q32R mutant, which was firstly introduced by an error in the cloning. Our high-resolution structure reveals for the first time that the higher sensitivity of the muscle isozyme towards AMP originates from an additional water-mediated, H-bonded network established between AMP and the binding pocket. Also present in our structures are a metaphosphate molecule, alternate conformations of Glu97 coordinating Mg(2+), and possible metal migration during catalysis. Although the individual subunit is similar to previously reported Fru-1,6-Pase structures, the tetrameric assembly of all these structures deviates from the canonical R- or T-states, representing novel tetrameric assemblies. Intriguingly, the concentration of AMP required for 50% inhibition of the Q32R mutant is increased 19-fold, and the cooperativity of both AMP and Mg(2+) is abolished or decreased. These structures demonstrate the Q32R mutation affects the conformations of both N-terminal residues and the dynamic loop 52-72. Also importantly, structural comparison indicates that this mutation in helix α2 is detrimental to the R-to-T conversion as evidenced by the absence of quaternary structural changes upon AMP binding, providing direct evidence for the critical role of helix α2 in the allosteric signal transduction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0071242</identifier><identifier>PMID: 24086250</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Monophosphate - metabolism ; Allosteric properties ; Allosteric Regulation ; AMP ; Binding ; Biochemistry ; Biology ; Catalysis ; Chemical bonds ; Cloning ; Crystal structure ; Crystallography, X-Ray ; E coli ; Endocrinology ; Enzyme kinetics ; Escherichia coli ; Fructose ; Fructose-Bisphosphatase - chemistry ; Fructose-Bisphosphatase - metabolism ; Gluconeogenesis ; Humans ; Kinetics ; Laboratories ; Ligands ; Liver ; Magnesium ; Mammals ; Metabolism ; Migration ; Models, Molecular ; Muscles ; Muscles - enzymology ; Musculoskeletal system ; Mutation ; Oncology ; Protein Structure, Quaternary ; Quaternary ; Signal Transduction ; Signal transmission ; Transduction</subject><ispartof>PLoS One, 2013-09, Vol.8 (9), p.e71242-e71242</ispartof><rights>2013 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Shi et al 2013 Shi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-65dfd7244465cc7140b7f2a5d2dbd82126e33942b742428b67ab22ee71653343</citedby><cites>FETCH-LOGICAL-c553t-65dfd7244465cc7140b7f2a5d2dbd82126e33942b742428b67ab22ee71653343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24086250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1096070$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Hofmann, Andreas</contributor><creatorcontrib>Shi, Rong</creatorcontrib><creatorcontrib>Chen, Ze-Yong</creatorcontrib><creatorcontrib>Zhu, Dao-Wei</creatorcontrib><creatorcontrib>Li, Chunmin</creatorcontrib><creatorcontrib>Shan, Yufei</creatorcontrib><creatorcontrib>Xu, Genjun</creatorcontrib><creatorcontrib>Lin, Sheng-Xiang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway</title><title>PLoS One</title><addtitle>PLoS One</addtitle><description>Fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis, is subject to metabolic regulation. The human muscle isozyme is significantly more sensitive towards the allosteric inhibitor, AMP, than the liver isoform. Here we report crystal structures and kinetic studies for wild-type human muscle Fru-1,6-Pase, the AMP-bound (1.6 Å), and product-bound complexes of the Q32R mutant, which was firstly introduced by an error in the cloning. Our high-resolution structure reveals for the first time that the higher sensitivity of the muscle isozyme towards AMP originates from an additional water-mediated, H-bonded network established between AMP and the binding pocket. Also present in our structures are a metaphosphate molecule, alternate conformations of Glu97 coordinating Mg(2+), and possible metal migration during catalysis. Although the individual subunit is similar to previously reported Fru-1,6-Pase structures, the tetrameric assembly of all these structures deviates from the canonical R- or T-states, representing novel tetrameric assemblies. Intriguingly, the concentration of AMP required for 50% inhibition of the Q32R mutant is increased 19-fold, and the cooperativity of both AMP and Mg(2+) is abolished or decreased. These structures demonstrate the Q32R mutation affects the conformations of both N-terminal residues and the dynamic loop 52-72. Also importantly, structural comparison indicates that this mutation in helix α2 is detrimental to the R-to-T conversion as evidenced by the absence of quaternary structural changes upon AMP binding, providing direct evidence for the critical role of helix α2 in the allosteric signal transduction.</description><subject>Adenosine Monophosphate - metabolism</subject><subject>Allosteric properties</subject><subject>Allosteric Regulation</subject><subject>AMP</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Catalysis</subject><subject>Chemical bonds</subject><subject>Cloning</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>E coli</subject><subject>Endocrinology</subject><subject>Enzyme kinetics</subject><subject>Escherichia coli</subject><subject>Fructose</subject><subject>Fructose-Bisphosphatase - chemistry</subject><subject>Fructose-Bisphosphatase - metabolism</subject><subject>Gluconeogenesis</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Liver</subject><subject>Magnesium</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Migration</subject><subject>Models, Molecular</subject><subject>Muscles</subject><subject>Muscles - enzymology</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Protein Structure, Quaternary</subject><subject>Quaternary</subject><subject>Signal Transduction</subject><subject>Signal transmission</subject><subject>Transduction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuEzEUHSEQLYU_QGDBhkUS_Bp7pgukKuJRqQgW3Vsez3XG0cRObU9RfoWvxSFp1SIWli3fc8895-hW1WuCF4RJ8nEdpuj1uNgGDwuMJaGcPqlOScvoXFDMnj54n1QvUlpjXLNGiOfVCeW4EbTGp9XvZdylrEeUcpxMniIkFCwapo32aDMlMwKy-0pIMCczMe9c2g6hHJ11gnPkwy2M6GbSGYqcuCtE5ZlmCPygvYEeXXz_ibS1zru8myHte6THMaSCdwYltyomUI7ap41LyQWPtjoPv_TuZfXM6jHBq-N9Vl1_-Xy9_Da_-vH1cnlxNTd1zfJc1L3tJeWci9oYSTjupKW67mnf9Q0lVABjLaed5CWhphNSd5QCSCJqxjg7q94eaLdFlDqmmhThTJaqxLQgLg-IPui12ka3KT5V0E79_QhxpXTMrkSltG2BEMsxyJ5zxpoSeM8tFq2wxnIoXJ-O06ZuA70BX6yPj0gfV7wb1CrcKiabmsumELw7EJQEnUrGZTCDCd6DyYrgVmCJC-jDcUoMNxOkrEq2BsZRewjT3lzR1rakqQv0_T_Q_0fADygTQ0oR7L1igtV-He-61H4d1XEdS9ubh27vm-72j_0BPOvgKQ</recordid><startdate>20130927</startdate><enddate>20130927</enddate><creator>Shi, Rong</creator><creator>Chen, Ze-Yong</creator><creator>Zhu, Dao-Wei</creator><creator>Li, Chunmin</creator><creator>Shan, Yufei</creator><creator>Xu, Genjun</creator><creator>Lin, Sheng-Xiang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130927</creationdate><title>Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway</title><author>Shi, Rong ; Chen, Ze-Yong ; Zhu, Dao-Wei ; Li, Chunmin ; Shan, Yufei ; Xu, Genjun ; Lin, Sheng-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-65dfd7244465cc7140b7f2a5d2dbd82126e33942b742428b67ab22ee71653343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Monophosphate - metabolism</topic><topic>Allosteric properties</topic><topic>Allosteric Regulation</topic><topic>AMP</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Catalysis</topic><topic>Chemical bonds</topic><topic>Cloning</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>E coli</topic><topic>Endocrinology</topic><topic>Enzyme kinetics</topic><topic>Escherichia coli</topic><topic>Fructose</topic><topic>Fructose-Bisphosphatase - chemistry</topic><topic>Fructose-Bisphosphatase - metabolism</topic><topic>Gluconeogenesis</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Liver</topic><topic>Magnesium</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Migration</topic><topic>Models, Molecular</topic><topic>Muscles</topic><topic>Muscles - enzymology</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Protein Structure, Quaternary</topic><topic>Quaternary</topic><topic>Signal Transduction</topic><topic>Signal transmission</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Rong</creatorcontrib><creatorcontrib>Chen, Ze-Yong</creatorcontrib><creatorcontrib>Zhu, Dao-Wei</creatorcontrib><creatorcontrib>Li, Chunmin</creatorcontrib><creatorcontrib>Shan, Yufei</creatorcontrib><creatorcontrib>Xu, Genjun</creatorcontrib><creatorcontrib>Lin, Sheng-Xiang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS One</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Rong</au><au>Chen, Ze-Yong</au><au>Zhu, Dao-Wei</au><au>Li, Chunmin</au><au>Shan, Yufei</au><au>Xu, Genjun</au><au>Lin, Sheng-Xiang</au><au>Hofmann, Andreas</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway</atitle><jtitle>PLoS One</jtitle><addtitle>PLoS One</addtitle><date>2013-09-27</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e71242</spage><epage>e71242</epage><pages>e71242-e71242</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Fructose-1,6-bisphosphatase, a key enzyme in gluconeogenesis, is subject to metabolic regulation. The human muscle isozyme is significantly more sensitive towards the allosteric inhibitor, AMP, than the liver isoform. Here we report crystal structures and kinetic studies for wild-type human muscle Fru-1,6-Pase, the AMP-bound (1.6 Å), and product-bound complexes of the Q32R mutant, which was firstly introduced by an error in the cloning. Our high-resolution structure reveals for the first time that the higher sensitivity of the muscle isozyme towards AMP originates from an additional water-mediated, H-bonded network established between AMP and the binding pocket. Also present in our structures are a metaphosphate molecule, alternate conformations of Glu97 coordinating Mg(2+), and possible metal migration during catalysis. Although the individual subunit is similar to previously reported Fru-1,6-Pase structures, the tetrameric assembly of all these structures deviates from the canonical R- or T-states, representing novel tetrameric assemblies. Intriguingly, the concentration of AMP required for 50% inhibition of the Q32R mutant is increased 19-fold, and the cooperativity of both AMP and Mg(2+) is abolished or decreased. These structures demonstrate the Q32R mutation affects the conformations of both N-terminal residues and the dynamic loop 52-72. Also importantly, structural comparison indicates that this mutation in helix α2 is detrimental to the R-to-T conversion as evidenced by the absence of quaternary structural changes upon AMP binding, providing direct evidence for the critical role of helix α2 in the allosteric signal transduction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24086250</pmid><doi>10.1371/journal.pone.0071242</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PLoS One, 2013-09, Vol.8 (9), p.e71242-e71242
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1437343702
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Monophosphate - metabolism
Allosteric properties
Allosteric Regulation
AMP
Binding
Biochemistry
Biology
Catalysis
Chemical bonds
Cloning
Crystal structure
Crystallography, X-Ray
E coli
Endocrinology
Enzyme kinetics
Escherichia coli
Fructose
Fructose-Bisphosphatase - chemistry
Fructose-Bisphosphatase - metabolism
Gluconeogenesis
Humans
Kinetics
Laboratories
Ligands
Liver
Magnesium
Mammals
Metabolism
Migration
Models, Molecular
Muscles
Muscles - enzymology
Musculoskeletal system
Mutation
Oncology
Protein Structure, Quaternary
Quaternary
Signal Transduction
Signal transmission
Transduction
title Crystal structures of human muscle fructose-1,6-bisphosphatase: novel quaternary states, enhanced AMP affinity, and allosteric signal transmission pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structures%20of%20human%20muscle%20fructose-1,6-bisphosphatase:%20novel%20quaternary%20states,%20enhanced%20AMP%20affinity,%20and%20allosteric%20signal%20transmission%20pathway&rft.jtitle=PLoS%20One&rft.au=Shi,%20Rong&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2013-09-27&rft.volume=8&rft.issue=9&rft.spage=e71242&rft.epage=e71242&rft.pages=e71242-e71242&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0071242&rft_dat=%3Cproquest_plos_%3E1443399185%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437343702&rft_id=info:pmid/24086250&rft_doaj_id=oai_doaj_org_article_af9e11f40e7d44338386d4f0696fcf4e&rfr_iscdi=true