Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload

Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-09, Vol.8 (9), p.e73887-e73887
Hauptverfasser: Fassett, John T, Xu, Xin, Kwak, Dongmin, Wang, Huan, Liu, Xiaoyu, Hu, Xinli, Bache, Robert J, Chen, Yingjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e73887
container_issue 9
container_start_page e73887
container_title PloS one
container_volume 8
creator Fassett, John T
Xu, Xin
Kwak, Dongmin
Wang, Huan
Liu, Xiaoyu
Hu, Xinli
Bache, Robert J
Chen, Yingjie
description Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p
doi_str_mv 10.1371/journal.pone.0073887
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1437157393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74713759c1c5413c82f42e6d4180e246</doaj_id><sourcerecordid>1443398833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</originalsourceid><addsrcrecordid>eNptUstu3CAUtapWzaP9g6pF6qYbT3nZ4E2laNSkkVJ1kz3CgCdMMUwBR5pdPr0440STqmyAyzmH-zhV9QHBFSIMfd2GKXrpVrvgzQpCRjhnr6pT1BFctxiS10fnk-ospS2EDeFt-7Y6wRTylkB4Wj38tCqGPPWTM-BCZevBOoaUamf9b-s34FKqHCJAIJrN5GQ2CSgZtQ3jPqh9NmA8EtA25Wj7KdvggfQaSC13WT5ecwB3Zgx672WhgHBvogtSv6veDNIl837Zz6vby--36x_1za-r6_XFTa0a3Oa6H5CChmPDGCsR2tOBMky5kk3TN7AUygcGWY-0lpxjjDhlEBIoke5b3ZHz6tNBdudCEkvvkkC0tLJhpCMFcX1A6CC3YhftKONeBGnFYyDEjZAxW-WMYJSVETSdQqqhiCiOB4pNqyni0GDaFq1vy29TPxqtjM9RuheiL1-8vRObcC8I47SsIvBlEYjhz2RSFqNNyjgnvQnTnDclpOOczHl__gf6_-roAaXm6UYzPCeDoJj99MQSs5_E4qdC-3hcyDPpyUDkLy6Syr8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437157393</pqid></control><display><type>article</type><title>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Fassett, John T ; Xu, Xin ; Kwak, Dongmin ; Wang, Huan ; Liu, Xiaoyu ; Hu, Xinli ; Bache, Robert J ; Chen, Yingjie</creator><creatorcontrib>Fassett, John T ; Xu, Xin ; Kwak, Dongmin ; Wang, Huan ; Liu, Xiaoyu ; Hu, Xinli ; Bache, Robert J ; Chen, Yingjie</creatorcontrib><description>Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p&lt;.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0073887</identifier><identifier>PMID: 24086300</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Actin ; Adaptation ; Adaptation, Physiological ; Animals ; Aorta ; Base Sequence ; Cardiomyocytes ; Caveolin ; Caveolin 3 - physiology ; Crosslinking ; DNA Primers ; Echocardiography ; Filaments ; Fractionation ; Heart ; Heart diseases ; Heart failure ; Hemodynamics ; Hypertension ; Hypertrophy ; Integrin beta1 - physiology ; Kinases ; Lung - physiopathology ; Lysates ; Medical schools ; Membranes ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - physiology ; Microtubules ; Microtubules - physiology ; Muscle contraction ; Myocytes, Cardiac - physiology ; Pressure ; Protein kinase C ; Protein Kinase C-alpha - physiology ; Proteins ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Rodents ; Signaling ; Smooth muscle ; Spatial distribution ; Structure-function relationships ; Tubulin ; Ventricle ; Ventricular Dysfunction, Left</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e73887-e73887</ispartof><rights>2013 Fassett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Fassett et al 2013 Fassett et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</citedby><cites>FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784444/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784444/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24086300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fassett, John T</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Kwak, Dongmin</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Xinli</creatorcontrib><creatorcontrib>Bache, Robert J</creatorcontrib><creatorcontrib>Chen, Yingjie</creatorcontrib><title>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p&lt;.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.</description><subject>Aberration</subject><subject>Actin</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Aorta</subject><subject>Base Sequence</subject><subject>Cardiomyocytes</subject><subject>Caveolin</subject><subject>Caveolin 3 - physiology</subject><subject>Crosslinking</subject><subject>DNA Primers</subject><subject>Echocardiography</subject><subject>Filaments</subject><subject>Fractionation</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Hemodynamics</subject><subject>Hypertension</subject><subject>Hypertrophy</subject><subject>Integrin beta1 - physiology</subject><subject>Kinases</subject><subject>Lung - physiopathology</subject><subject>Lysates</subject><subject>Medical schools</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - physiology</subject><subject>Microtubules</subject><subject>Microtubules - physiology</subject><subject>Muscle contraction</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Pressure</subject><subject>Protein kinase C</subject><subject>Protein Kinase C-alpha - physiology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Rodents</subject><subject>Signaling</subject><subject>Smooth muscle</subject><subject>Spatial distribution</subject><subject>Structure-function relationships</subject><subject>Tubulin</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Left</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu3CAUtapWzaP9g6pF6qYbT3nZ4E2laNSkkVJ1kz3CgCdMMUwBR5pdPr0440STqmyAyzmH-zhV9QHBFSIMfd2GKXrpVrvgzQpCRjhnr6pT1BFctxiS10fnk-ospS2EDeFt-7Y6wRTylkB4Wj38tCqGPPWTM-BCZevBOoaUamf9b-s34FKqHCJAIJrN5GQ2CSgZtQ3jPqh9NmA8EtA25Wj7KdvggfQaSC13WT5ecwB3Zgx672WhgHBvogtSv6veDNIl837Zz6vby--36x_1za-r6_XFTa0a3Oa6H5CChmPDGCsR2tOBMky5kk3TN7AUygcGWY-0lpxjjDhlEBIoke5b3ZHz6tNBdudCEkvvkkC0tLJhpCMFcX1A6CC3YhftKONeBGnFYyDEjZAxW-WMYJSVETSdQqqhiCiOB4pNqyni0GDaFq1vy29TPxqtjM9RuheiL1-8vRObcC8I47SsIvBlEYjhz2RSFqNNyjgnvQnTnDclpOOczHl__gf6_-roAaXm6UYzPCeDoJj99MQSs5_E4qdC-3hcyDPpyUDkLy6Syr8</recordid><startdate>20130926</startdate><enddate>20130926</enddate><creator>Fassett, John T</creator><creator>Xu, Xin</creator><creator>Kwak, Dongmin</creator><creator>Wang, Huan</creator><creator>Liu, Xiaoyu</creator><creator>Hu, Xinli</creator><creator>Bache, Robert J</creator><creator>Chen, Yingjie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130926</creationdate><title>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</title><author>Fassett, John T ; Xu, Xin ; Kwak, Dongmin ; Wang, Huan ; Liu, Xiaoyu ; Hu, Xinli ; Bache, Robert J ; Chen, Yingjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aberration</topic><topic>Actin</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Aorta</topic><topic>Base Sequence</topic><topic>Cardiomyocytes</topic><topic>Caveolin</topic><topic>Caveolin 3 - physiology</topic><topic>Crosslinking</topic><topic>DNA Primers</topic><topic>Echocardiography</topic><topic>Filaments</topic><topic>Fractionation</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Hemodynamics</topic><topic>Hypertension</topic><topic>Hypertrophy</topic><topic>Integrin beta1 - physiology</topic><topic>Kinases</topic><topic>Lung - physiopathology</topic><topic>Lysates</topic><topic>Medical schools</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - physiology</topic><topic>Microtubules</topic><topic>Microtubules - physiology</topic><topic>Muscle contraction</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Pressure</topic><topic>Protein kinase C</topic><topic>Protein Kinase C-alpha - physiology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Rodents</topic><topic>Signaling</topic><topic>Smooth muscle</topic><topic>Spatial distribution</topic><topic>Structure-function relationships</topic><topic>Tubulin</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fassett, John T</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Kwak, Dongmin</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Xinli</creatorcontrib><creatorcontrib>Bache, Robert J</creatorcontrib><creatorcontrib>Chen, Yingjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fassett, John T</au><au>Xu, Xin</au><au>Kwak, Dongmin</au><au>Wang, Huan</au><au>Liu, Xiaoyu</au><au>Hu, Xinli</au><au>Bache, Robert J</au><au>Chen, Yingjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-26</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e73887</spage><epage>e73887</epage><pages>e73887-e73887</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p&lt;.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24086300</pmid><doi>10.1371/journal.pone.0073887</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-09, Vol.8 (9), p.e73887-e73887
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1437157393
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Aberration
Actin
Adaptation
Adaptation, Physiological
Animals
Aorta
Base Sequence
Cardiomyocytes
Caveolin
Caveolin 3 - physiology
Crosslinking
DNA Primers
Echocardiography
Filaments
Fractionation
Heart
Heart diseases
Heart failure
Hemodynamics
Hypertension
Hypertrophy
Integrin beta1 - physiology
Kinases
Lung - physiopathology
Lysates
Medical schools
Membranes
Mice
Mice, Inbred C57BL
Mice, Knockout
Microfilament Proteins - physiology
Microtubules
Microtubules - physiology
Muscle contraction
Myocytes, Cardiac - physiology
Pressure
Protein kinase C
Protein Kinase C-alpha - physiology
Proteins
Rats
Rats, Sprague-Dawley
Real-Time Polymerase Chain Reaction
Rodents
Signaling
Smooth muscle
Spatial distribution
Structure-function relationships
Tubulin
Ventricle
Ventricular Dysfunction, Left
title Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubule%20Actin%20Cross-linking%20Factor%201%20regulates%20cardiomyocyte%20microtubule%20distribution%20and%20adaptation%20to%20hemodynamic%20overload&rft.jtitle=PloS%20one&rft.au=Fassett,%20John%20T&rft.date=2013-09-26&rft.volume=8&rft.issue=9&rft.spage=e73887&rft.epage=e73887&rft.pages=e73887-e73887&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0073887&rft_dat=%3Cproquest_plos_%3E1443398833%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437157393&rft_id=info:pmid/24086300&rft_doaj_id=oai_doaj_org_article_74713759c1c5413c82f42e6d4180e246&rfr_iscdi=true