Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload
Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along act...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-09, Vol.8 (9), p.e73887-e73887 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e73887 |
---|---|
container_issue | 9 |
container_start_page | e73887 |
container_title | PloS one |
container_volume | 8 |
creator | Fassett, John T Xu, Xin Kwak, Dongmin Wang, Huan Liu, Xiaoyu Hu, Xinli Bache, Robert J Chen, Yingjie |
description | Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p |
doi_str_mv | 10.1371/journal.pone.0073887 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1437157393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74713759c1c5413c82f42e6d4180e246</doaj_id><sourcerecordid>1443398833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</originalsourceid><addsrcrecordid>eNptUstu3CAUtapWzaP9g6pF6qYbT3nZ4E2laNSkkVJ1kz3CgCdMMUwBR5pdPr0440STqmyAyzmH-zhV9QHBFSIMfd2GKXrpVrvgzQpCRjhnr6pT1BFctxiS10fnk-ospS2EDeFt-7Y6wRTylkB4Wj38tCqGPPWTM-BCZevBOoaUamf9b-s34FKqHCJAIJrN5GQ2CSgZtQ3jPqh9NmA8EtA25Wj7KdvggfQaSC13WT5ecwB3Zgx672WhgHBvogtSv6veDNIl837Zz6vby--36x_1za-r6_XFTa0a3Oa6H5CChmPDGCsR2tOBMky5kk3TN7AUygcGWY-0lpxjjDhlEBIoke5b3ZHz6tNBdudCEkvvkkC0tLJhpCMFcX1A6CC3YhftKONeBGnFYyDEjZAxW-WMYJSVETSdQqqhiCiOB4pNqyni0GDaFq1vy29TPxqtjM9RuheiL1-8vRObcC8I47SsIvBlEYjhz2RSFqNNyjgnvQnTnDclpOOczHl__gf6_-roAaXm6UYzPCeDoJj99MQSs5_E4qdC-3hcyDPpyUDkLy6Syr8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437157393</pqid></control><display><type>article</type><title>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Fassett, John T ; Xu, Xin ; Kwak, Dongmin ; Wang, Huan ; Liu, Xiaoyu ; Hu, Xinli ; Bache, Robert J ; Chen, Yingjie</creator><creatorcontrib>Fassett, John T ; Xu, Xin ; Kwak, Dongmin ; Wang, Huan ; Liu, Xiaoyu ; Hu, Xinli ; Bache, Robert J ; Chen, Yingjie</creatorcontrib><description>Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0073887</identifier><identifier>PMID: 24086300</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Actin ; Adaptation ; Adaptation, Physiological ; Animals ; Aorta ; Base Sequence ; Cardiomyocytes ; Caveolin ; Caveolin 3 - physiology ; Crosslinking ; DNA Primers ; Echocardiography ; Filaments ; Fractionation ; Heart ; Heart diseases ; Heart failure ; Hemodynamics ; Hypertension ; Hypertrophy ; Integrin beta1 - physiology ; Kinases ; Lung - physiopathology ; Lysates ; Medical schools ; Membranes ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - physiology ; Microtubules ; Microtubules - physiology ; Muscle contraction ; Myocytes, Cardiac - physiology ; Pressure ; Protein kinase C ; Protein Kinase C-alpha - physiology ; Proteins ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Rodents ; Signaling ; Smooth muscle ; Spatial distribution ; Structure-function relationships ; Tubulin ; Ventricle ; Ventricular Dysfunction, Left</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e73887-e73887</ispartof><rights>2013 Fassett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Fassett et al 2013 Fassett et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</citedby><cites>FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784444/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784444/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24086300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fassett, John T</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Kwak, Dongmin</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Xinli</creatorcontrib><creatorcontrib>Bache, Robert J</creatorcontrib><creatorcontrib>Chen, Yingjie</creatorcontrib><title>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.</description><subject>Aberration</subject><subject>Actin</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Aorta</subject><subject>Base Sequence</subject><subject>Cardiomyocytes</subject><subject>Caveolin</subject><subject>Caveolin 3 - physiology</subject><subject>Crosslinking</subject><subject>DNA Primers</subject><subject>Echocardiography</subject><subject>Filaments</subject><subject>Fractionation</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Hemodynamics</subject><subject>Hypertension</subject><subject>Hypertrophy</subject><subject>Integrin beta1 - physiology</subject><subject>Kinases</subject><subject>Lung - physiopathology</subject><subject>Lysates</subject><subject>Medical schools</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - physiology</subject><subject>Microtubules</subject><subject>Microtubules - physiology</subject><subject>Muscle contraction</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Pressure</subject><subject>Protein kinase C</subject><subject>Protein Kinase C-alpha - physiology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Rodents</subject><subject>Signaling</subject><subject>Smooth muscle</subject><subject>Spatial distribution</subject><subject>Structure-function relationships</subject><subject>Tubulin</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Left</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu3CAUtapWzaP9g6pF6qYbT3nZ4E2laNSkkVJ1kz3CgCdMMUwBR5pdPr0440STqmyAyzmH-zhV9QHBFSIMfd2GKXrpVrvgzQpCRjhnr6pT1BFctxiS10fnk-ospS2EDeFt-7Y6wRTylkB4Wj38tCqGPPWTM-BCZevBOoaUamf9b-s34FKqHCJAIJrN5GQ2CSgZtQ3jPqh9NmA8EtA25Wj7KdvggfQaSC13WT5ecwB3Zgx672WhgHBvogtSv6veDNIl837Zz6vby--36x_1za-r6_XFTa0a3Oa6H5CChmPDGCsR2tOBMky5kk3TN7AUygcGWY-0lpxjjDhlEBIoke5b3ZHz6tNBdudCEkvvkkC0tLJhpCMFcX1A6CC3YhftKONeBGnFYyDEjZAxW-WMYJSVETSdQqqhiCiOB4pNqyni0GDaFq1vy29TPxqtjM9RuheiL1-8vRObcC8I47SsIvBlEYjhz2RSFqNNyjgnvQnTnDclpOOczHl__gf6_-roAaXm6UYzPCeDoJj99MQSs5_E4qdC-3hcyDPpyUDkLy6Syr8</recordid><startdate>20130926</startdate><enddate>20130926</enddate><creator>Fassett, John T</creator><creator>Xu, Xin</creator><creator>Kwak, Dongmin</creator><creator>Wang, Huan</creator><creator>Liu, Xiaoyu</creator><creator>Hu, Xinli</creator><creator>Bache, Robert J</creator><creator>Chen, Yingjie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130926</creationdate><title>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</title><author>Fassett, John T ; Xu, Xin ; Kwak, Dongmin ; Wang, Huan ; Liu, Xiaoyu ; Hu, Xinli ; Bache, Robert J ; Chen, Yingjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-bf1c0e82e777c524b4f47248ca55b509328f707b1dda882218470030a1db6d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aberration</topic><topic>Actin</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Aorta</topic><topic>Base Sequence</topic><topic>Cardiomyocytes</topic><topic>Caveolin</topic><topic>Caveolin 3 - physiology</topic><topic>Crosslinking</topic><topic>DNA Primers</topic><topic>Echocardiography</topic><topic>Filaments</topic><topic>Fractionation</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Hemodynamics</topic><topic>Hypertension</topic><topic>Hypertrophy</topic><topic>Integrin beta1 - physiology</topic><topic>Kinases</topic><topic>Lung - physiopathology</topic><topic>Lysates</topic><topic>Medical schools</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - physiology</topic><topic>Microtubules</topic><topic>Microtubules - physiology</topic><topic>Muscle contraction</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Pressure</topic><topic>Protein kinase C</topic><topic>Protein Kinase C-alpha - physiology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Rodents</topic><topic>Signaling</topic><topic>Smooth muscle</topic><topic>Spatial distribution</topic><topic>Structure-function relationships</topic><topic>Tubulin</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fassett, John T</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Kwak, Dongmin</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Hu, Xinli</creatorcontrib><creatorcontrib>Bache, Robert J</creatorcontrib><creatorcontrib>Chen, Yingjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fassett, John T</au><au>Xu, Xin</au><au>Kwak, Dongmin</au><au>Wang, Huan</au><au>Liu, Xiaoyu</au><au>Hu, Xinli</au><au>Bache, Robert J</au><au>Chen, Yingjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-26</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e73887</spage><epage>e73887</epage><pages>e73887-e73887</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24086300</pmid><doi>10.1371/journal.pone.0073887</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-09, Vol.8 (9), p.e73887-e73887 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1437157393 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Aberration Actin Adaptation Adaptation, Physiological Animals Aorta Base Sequence Cardiomyocytes Caveolin Caveolin 3 - physiology Crosslinking DNA Primers Echocardiography Filaments Fractionation Heart Heart diseases Heart failure Hemodynamics Hypertension Hypertrophy Integrin beta1 - physiology Kinases Lung - physiopathology Lysates Medical schools Membranes Mice Mice, Inbred C57BL Mice, Knockout Microfilament Proteins - physiology Microtubules Microtubules - physiology Muscle contraction Myocytes, Cardiac - physiology Pressure Protein kinase C Protein Kinase C-alpha - physiology Proteins Rats Rats, Sprague-Dawley Real-Time Polymerase Chain Reaction Rodents Signaling Smooth muscle Spatial distribution Structure-function relationships Tubulin Ventricle Ventricular Dysfunction, Left |
title | Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubule%20Actin%20Cross-linking%20Factor%201%20regulates%20cardiomyocyte%20microtubule%20distribution%20and%20adaptation%20to%20hemodynamic%20overload&rft.jtitle=PloS%20one&rft.au=Fassett,%20John%20T&rft.date=2013-09-26&rft.volume=8&rft.issue=9&rft.spage=e73887&rft.epage=e73887&rft.pages=e73887-e73887&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0073887&rft_dat=%3Cproquest_plos_%3E1443398833%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437157393&rft_id=info:pmid/24086300&rft_doaj_id=oai_doaj_org_article_74713759c1c5413c82f42e6d4180e246&rfr_iscdi=true |