Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data
Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively consider...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-09, Vol.8 (9), p.e70330 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e70330 |
container_title | PloS one |
container_volume | 8 |
creator | Yamashita, Fumiyoshi Sasa, Yukako Yoshida, Shuya Hisaka, Akihiro Asai, Yoshiyuki Kitano, Hiroaki Hashida, Mitsuru Suzuki, Hiroshi |
description | Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner. |
doi_str_mv | 10.1371/journal.pone.0070330 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1435973156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478820463</galeid><doaj_id>oai_doaj_org_article_98f4ac5e0a6e419f9abe52a147fe27f3</doaj_id><sourcerecordid>A478820463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c802t-ef8205d3d51f572974d0b080c9f518ba964f9f73e6443b1b842e7ee1e2ad94cf3</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrckk85EboRQ_CisrfoFX4TQ5aVOmk5pkinvrLzfTdpdW9kICSTh53jfJSU6WPaVkTFlN36xc7ztoxxvX4ZiQmjBG7mXnVLBiVBWE3T-an2WPQlgRUrKmqh5mZwUnTVXw-jz788lpbG23yJ3JvTWw3lhlu5HtdK9Q59Ofn9mE56Ci3UK0rsv1dQdrq0JunM_jEvONR23Vbi15qGRmFbS59v1iNHS57SJ62BFJ5d06RfKtjd7lGiI8zh4YaAM-OYwX2ff3775NP44urz7MppPLkWpIEUdomoKUmumSmrIuRM01mZOGKGFK2sxBVNwIUzOsOGdzOm94gTUixQK04Mqwi-z53nfTuiAP6QuSclaKmtGySsRsT2gHK7nxdg3-WjqwchdwfiHBR6talKIxHFSJBCrkVBgBcywLoLw2WNSGJa-3h936-Rq1wi56aE9MT1c6u5QLt5WsbgoummTw6mDg3a8eQ5RrGxS2LXTo-uHcnDEhOBEJffEPevftDtQC0gVsZ1zaVw2mcsLrJmWXV8O5x3dQqWlMr57-mrEpfiJ4fSJITMTfcQF9CHL29cv_s1c_TtmXR-wSoY3L4Np-941OQb4HlXcheDS3SaZEDqVykw05lIo8lEqSPTt-oFvRTW2wv3NeD8U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435973156</pqid></control><display><type>article</type><title>Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Yamashita, Fumiyoshi ; Sasa, Yukako ; Yoshida, Shuya ; Hisaka, Akihiro ; Asai, Yoshiyuki ; Kitano, Hiroaki ; Hashida, Mitsuru ; Suzuki, Hiroshi</creator><creatorcontrib>Yamashita, Fumiyoshi ; Sasa, Yukako ; Yoshida, Shuya ; Hisaka, Akihiro ; Asai, Yoshiyuki ; Kitano, Hiroaki ; Hashida, Mitsuru ; Suzuki, Hiroshi</creatorcontrib><description>Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0070330</identifier><identifier>PMID: 24086247</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibiotics, Antitubercular - pharmacology ; Blood levels ; Cells, Cultured ; Complications and side effects ; Computer simulation ; Cytochrome ; Cytochrome P-450 ; Cytochrome P-450 CYP3A - metabolism ; Cytochrome P450 ; Drug dosages ; Drug Interactions ; Drug metabolism ; Drugs ; Enzyme Activation ; Enzymes ; Hepatocytes ; Hepatocytes - drug effects ; Hepatocytes - enzymology ; Humans ; In Vitro Techniques ; Least squares method ; Mathematical models ; Metabolism ; Model accuracy ; Models, Theoretical ; Pharmaceutical sciences ; Pharmacology ; Physiological aspects ; Predictions ; Rifampin ; Rifampin - pharmacology ; Static models ; Studies ; Substrates ; Transcription ; Translation</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e70330</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Yamashita et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Yamashita et al 2013 Yamashita et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c802t-ef8205d3d51f572974d0b080c9f518ba964f9f73e6443b1b842e7ee1e2ad94cf3</citedby><cites>FETCH-LOGICAL-c802t-ef8205d3d51f572974d0b080c9f518ba964f9f73e6443b1b842e7ee1e2ad94cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24086247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamashita, Fumiyoshi</creatorcontrib><creatorcontrib>Sasa, Yukako</creatorcontrib><creatorcontrib>Yoshida, Shuya</creatorcontrib><creatorcontrib>Hisaka, Akihiro</creatorcontrib><creatorcontrib>Asai, Yoshiyuki</creatorcontrib><creatorcontrib>Kitano, Hiroaki</creatorcontrib><creatorcontrib>Hashida, Mitsuru</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><title>Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner.</description><subject>Antibiotics, Antitubercular - pharmacology</subject><subject>Blood levels</subject><subject>Cells, Cultured</subject><subject>Complications and side effects</subject><subject>Computer simulation</subject><subject>Cytochrome</subject><subject>Cytochrome P-450</subject><subject>Cytochrome P-450 CYP3A - metabolism</subject><subject>Cytochrome P450</subject><subject>Drug dosages</subject><subject>Drug Interactions</subject><subject>Drug metabolism</subject><subject>Drugs</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Hepatocytes</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - enzymology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Model accuracy</subject><subject>Models, Theoretical</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Physiological aspects</subject><subject>Predictions</subject><subject>Rifampin</subject><subject>Rifampin - pharmacology</subject><subject>Static models</subject><subject>Studies</subject><subject>Substrates</subject><subject>Transcription</subject><subject>Translation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrckk85EboRQ_CisrfoFX4TQ5aVOmk5pkinvrLzfTdpdW9kICSTh53jfJSU6WPaVkTFlN36xc7ztoxxvX4ZiQmjBG7mXnVLBiVBWE3T-an2WPQlgRUrKmqh5mZwUnTVXw-jz788lpbG23yJ3JvTWw3lhlu5HtdK9Q59Ofn9mE56Ci3UK0rsv1dQdrq0JunM_jEvONR23Vbi15qGRmFbS59v1iNHS57SJ62BFJ5d06RfKtjd7lGiI8zh4YaAM-OYwX2ff3775NP44urz7MppPLkWpIEUdomoKUmumSmrIuRM01mZOGKGFK2sxBVNwIUzOsOGdzOm94gTUixQK04Mqwi-z53nfTuiAP6QuSclaKmtGySsRsT2gHK7nxdg3-WjqwchdwfiHBR6talKIxHFSJBCrkVBgBcywLoLw2WNSGJa-3h936-Rq1wi56aE9MT1c6u5QLt5WsbgoummTw6mDg3a8eQ5RrGxS2LXTo-uHcnDEhOBEJffEPevftDtQC0gVsZ1zaVw2mcsLrJmWXV8O5x3dQqWlMr57-mrEpfiJ4fSJITMTfcQF9CHL29cv_s1c_TtmXR-wSoY3L4Np-941OQb4HlXcheDS3SaZEDqVykw05lIo8lEqSPTt-oFvRTW2wv3NeD8U</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Yamashita, Fumiyoshi</creator><creator>Sasa, Yukako</creator><creator>Yoshida, Shuya</creator><creator>Hisaka, Akihiro</creator><creator>Asai, Yoshiyuki</creator><creator>Kitano, Hiroaki</creator><creator>Hashida, Mitsuru</creator><creator>Suzuki, Hiroshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130924</creationdate><title>Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data</title><author>Yamashita, Fumiyoshi ; Sasa, Yukako ; Yoshida, Shuya ; Hisaka, Akihiro ; Asai, Yoshiyuki ; Kitano, Hiroaki ; Hashida, Mitsuru ; Suzuki, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c802t-ef8205d3d51f572974d0b080c9f518ba964f9f73e6443b1b842e7ee1e2ad94cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antibiotics, Antitubercular - pharmacology</topic><topic>Blood levels</topic><topic>Cells, Cultured</topic><topic>Complications and side effects</topic><topic>Computer simulation</topic><topic>Cytochrome</topic><topic>Cytochrome P-450</topic><topic>Cytochrome P-450 CYP3A - metabolism</topic><topic>Cytochrome P450</topic><topic>Drug dosages</topic><topic>Drug Interactions</topic><topic>Drug metabolism</topic><topic>Drugs</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Hepatocytes</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - enzymology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Model accuracy</topic><topic>Models, Theoretical</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Physiological aspects</topic><topic>Predictions</topic><topic>Rifampin</topic><topic>Rifampin - pharmacology</topic><topic>Static models</topic><topic>Studies</topic><topic>Substrates</topic><topic>Transcription</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Fumiyoshi</creatorcontrib><creatorcontrib>Sasa, Yukako</creatorcontrib><creatorcontrib>Yoshida, Shuya</creatorcontrib><creatorcontrib>Hisaka, Akihiro</creatorcontrib><creatorcontrib>Asai, Yoshiyuki</creatorcontrib><creatorcontrib>Kitano, Hiroaki</creatorcontrib><creatorcontrib>Hashida, Mitsuru</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Fumiyoshi</au><au>Sasa, Yukako</au><au>Yoshida, Shuya</au><au>Hisaka, Akihiro</au><au>Asai, Yoshiyuki</au><au>Kitano, Hiroaki</au><au>Hashida, Mitsuru</au><au>Suzuki, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e70330</spage><pages>e70330-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24086247</pmid><doi>10.1371/journal.pone.0070330</doi><tpages>e70330</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-09, Vol.8 (9), p.e70330 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1435973156 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Antibiotics, Antitubercular - pharmacology Blood levels Cells, Cultured Complications and side effects Computer simulation Cytochrome Cytochrome P-450 Cytochrome P-450 CYP3A - metabolism Cytochrome P450 Drug dosages Drug Interactions Drug metabolism Drugs Enzyme Activation Enzymes Hepatocytes Hepatocytes - drug effects Hepatocytes - enzymology Humans In Vitro Techniques Least squares method Mathematical models Metabolism Model accuracy Models, Theoretical Pharmaceutical sciences Pharmacology Physiological aspects Predictions Rifampin Rifampin - pharmacology Static models Studies Substrates Transcription Translation |
title | Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20rifampicin-induced%20CYP3A4%20activation%20dynamics%20for%20the%20prediction%20of%20clinical%20drug-drug%20interactions%20from%20in%20vitro%20data&rft.jtitle=PloS%20one&rft.au=Yamashita,%20Fumiyoshi&rft.date=2013-09-24&rft.volume=8&rft.issue=9&rft.spage=e70330&rft.pages=e70330-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0070330&rft_dat=%3Cgale_plos_%3EA478820463%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1435973156&rft_id=info:pmid/24086247&rft_galeid=A478820463&rft_doaj_id=oai_doaj_org_article_98f4ac5e0a6e419f9abe52a147fe27f3&rfr_iscdi=true |