Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone

Biomineralization templated by organic molecules to produce inorganic-organic nanocomposites is a fascinating example of nature using bottom-up strategies at nanoscale to accomplish highly ordered multifunctional materials. One such nanocomposite is bone, composed primarily of hydroxyapatite (HA) na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-09, Vol.8 (9), p.e76782-e76782
Hauptverfasser: Li, Yuping, Aparicio, Conrado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e76782
container_issue 9
container_start_page e76782
container_title PloS one
container_volume 8
creator Li, Yuping
Aparicio, Conrado
description Biomineralization templated by organic molecules to produce inorganic-organic nanocomposites is a fascinating example of nature using bottom-up strategies at nanoscale to accomplish highly ordered multifunctional materials. One such nanocomposite is bone, composed primarily of hydroxyapatite (HA) nanocrystals that are embedded within collagen fibrils with their c-axes arranged roughly parallel to the long axis of the fibrils. Here we discern the ultra-structure of biomimetic mineralized collagen fibrils (MCFs) as consisting of bundles of subfibrils with approximately 10 nm diameter; each one with an organic-inorganic core-shell structure. Through an amorphous calcium phosphate precursor phase the HA nanocrystals were specifically grown along the longitudinal direction of the collagen microfibrils and encapsulated them within the crystal lattice. They intercalated throughout the collagen fibrils such that the mineral phase surrounded the surface of collagen microfibrils forming an interdigitated network. It appears that this arrangement of collagen microfibrils in collagen fibrils is responsible for the observed ultrastructure. Such a subfibrillar nanostructure in MCFs was identified in both synthetic and natural bone, suggesting this is the basic building block of collagen-based hard tissues. Insights into the ultrastructure of mineralized collagen fibrils have the potential to advance our understanding on the biomineralization principles and the relationship between bone's structure and mechanical properties, including fracture toughness mechanisms. We anticipate that these principles from biological systems can be applied to the rational design of new nanocomposites with improved performance.
doi_str_mv 10.1371/journal.pone.0076782
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1435431455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478132862</galeid><doaj_id>oai_doaj_org_article_e4acd311346d4080aea6891c904f4ccd</doaj_id><sourcerecordid>A478132862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-6e498cbe74c5314cae62f57acbec6e3ffb9d1ea61f6e63bb701dca3b19a76b4d3</originalsourceid><addsrcrecordid>eNqNk12L1TAQhoso7rr6D0QLgujFOSZNmrZeCMv6tbCw4NdtSNNJTw5pcjZJRf31pnu6y6nshfQiZfLM-2ZmmCx7itEakwq_2brRW2HWO2dhjVDFqrq4lx3jhhQrViBy_-D_KHsUwhahktSMPcyOCopqVjFynA3vdZDgrbZ9HjeQh7FVuvXaGOHzEP0o4-ghdyoftAUvjP4DXS5duu_B5ns2vM1FPrgOTK6cv9YZTfRikd-mdz7OHihhAjyZz5Ps-8cP384-ry4uP52fnV6sZFXWccWANrVsoaKyJJhKAaxQZSVSSDIgSrVNh0EwrBgw0rYVwp0UpMWNqFhLO3KSPd_r7owLfO5U4JiSkibBskzE-Z7onNjyndeD8L-5E5pfB5zvufBRSwMcqJAdwZhQ1qW-IZGc6wbLBlFFpZzc3s1uYztAJ8Gm2s1CdHlj9Yb37icnVY0xY0ng1Szg3dUIIfJhmkrqsQU3Tu-mhDRlQ-uEvvgHvbu6mepFKkBb5ZKvnET5KU2mpKhZkaj1HVT6Ohi0TONSOsUXCa8XCYmJ8Cv2YgyBn3_98v_s5Y8l-_KA3YAwcROcGaN2NixBugeldyF4ULdNxohPW3HTDT5tBZ-3IqU9OxzQbdLNGpC_EpIKLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435431455</pqid></control><display><type>article</type><title>Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Yuping ; Aparicio, Conrado</creator><contributor>Malaval, Luc</contributor><creatorcontrib>Li, Yuping ; Aparicio, Conrado ; Malaval, Luc</creatorcontrib><description>Biomineralization templated by organic molecules to produce inorganic-organic nanocomposites is a fascinating example of nature using bottom-up strategies at nanoscale to accomplish highly ordered multifunctional materials. One such nanocomposite is bone, composed primarily of hydroxyapatite (HA) nanocrystals that are embedded within collagen fibrils with their c-axes arranged roughly parallel to the long axis of the fibrils. Here we discern the ultra-structure of biomimetic mineralized collagen fibrils (MCFs) as consisting of bundles of subfibrils with approximately 10 nm diameter; each one with an organic-inorganic core-shell structure. Through an amorphous calcium phosphate precursor phase the HA nanocrystals were specifically grown along the longitudinal direction of the collagen microfibrils and encapsulated them within the crystal lattice. They intercalated throughout the collagen fibrils such that the mineral phase surrounded the surface of collagen microfibrils forming an interdigitated network. It appears that this arrangement of collagen microfibrils in collagen fibrils is responsible for the observed ultrastructure. Such a subfibrillar nanostructure in MCFs was identified in both synthetic and natural bone, suggesting this is the basic building block of collagen-based hard tissues. Insights into the ultrastructure of mineralized collagen fibrils have the potential to advance our understanding on the biomineralization principles and the relationship between bone's structure and mechanical properties, including fracture toughness mechanisms. We anticipate that these principles from biological systems can be applied to the rational design of new nanocomposites with improved performance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0076782</identifier><identifier>PMID: 24086763</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biomechanical Phenomena ; Biomechanics ; Biomedical materials ; Biomimetics ; Bone and Bones - metabolism ; Bone and Bones - physiology ; Bone and Bones - ultrastructure ; Calcification, Physiologic ; Calcium ; Calcium phosphate ; Calcium phosphates ; Cattle ; Collagen ; Collagen Type I - chemistry ; Collagen Type I - metabolism ; Core-shell structure ; Crystal lattices ; Crystals ; Dental research ; Dentistry ; Fibrils ; Fracture toughness ; Hydroxyapatite ; Hydroxyapatites ; Mechanical properties ; Microfibrils ; Mineralization ; Models, Biological ; Multifunctional materials ; Nanocomposites ; Nanocrystals ; Organic chemistry ; Phosphates ; Polymers ; Studies ; Surgical implants ; Tissues ; Ultrastructure</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e76782-e76782</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Li et al 2013 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-6e498cbe74c5314cae62f57acbec6e3ffb9d1ea61f6e63bb701dca3b19a76b4d3</citedby><cites>FETCH-LOGICAL-c758t-6e498cbe74c5314cae62f57acbec6e3ffb9d1ea61f6e63bb701dca3b19a76b4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781166/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781166/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24086763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Malaval, Luc</contributor><creatorcontrib>Li, Yuping</creatorcontrib><creatorcontrib>Aparicio, Conrado</creatorcontrib><title>Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Biomineralization templated by organic molecules to produce inorganic-organic nanocomposites is a fascinating example of nature using bottom-up strategies at nanoscale to accomplish highly ordered multifunctional materials. One such nanocomposite is bone, composed primarily of hydroxyapatite (HA) nanocrystals that are embedded within collagen fibrils with their c-axes arranged roughly parallel to the long axis of the fibrils. Here we discern the ultra-structure of biomimetic mineralized collagen fibrils (MCFs) as consisting of bundles of subfibrils with approximately 10 nm diameter; each one with an organic-inorganic core-shell structure. Through an amorphous calcium phosphate precursor phase the HA nanocrystals were specifically grown along the longitudinal direction of the collagen microfibrils and encapsulated them within the crystal lattice. They intercalated throughout the collagen fibrils such that the mineral phase surrounded the surface of collagen microfibrils forming an interdigitated network. It appears that this arrangement of collagen microfibrils in collagen fibrils is responsible for the observed ultrastructure. Such a subfibrillar nanostructure in MCFs was identified in both synthetic and natural bone, suggesting this is the basic building block of collagen-based hard tissues. Insights into the ultrastructure of mineralized collagen fibrils have the potential to advance our understanding on the biomineralization principles and the relationship between bone's structure and mechanical properties, including fracture toughness mechanisms. We anticipate that these principles from biological systems can be applied to the rational design of new nanocomposites with improved performance.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - physiology</subject><subject>Bone and Bones - ultrastructure</subject><subject>Calcification, Physiologic</subject><subject>Calcium</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Cattle</subject><subject>Collagen</subject><subject>Collagen Type I - chemistry</subject><subject>Collagen Type I - metabolism</subject><subject>Core-shell structure</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Dental research</subject><subject>Dentistry</subject><subject>Fibrils</subject><subject>Fracture toughness</subject><subject>Hydroxyapatite</subject><subject>Hydroxyapatites</subject><subject>Mechanical properties</subject><subject>Microfibrils</subject><subject>Mineralization</subject><subject>Models, Biological</subject><subject>Multifunctional materials</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Organic chemistry</subject><subject>Phosphates</subject><subject>Polymers</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Tissues</subject><subject>Ultrastructure</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1TAQhoso7rr6D0QLgujFOSZNmrZeCMv6tbCw4NdtSNNJTw5pcjZJRf31pnu6y6nshfQiZfLM-2ZmmCx7itEakwq_2brRW2HWO2dhjVDFqrq4lx3jhhQrViBy_-D_KHsUwhahktSMPcyOCopqVjFynA3vdZDgrbZ9HjeQh7FVuvXaGOHzEP0o4-ghdyoftAUvjP4DXS5duu_B5ns2vM1FPrgOTK6cv9YZTfRikd-mdz7OHihhAjyZz5Ps-8cP384-ry4uP52fnV6sZFXWccWANrVsoaKyJJhKAaxQZSVSSDIgSrVNh0EwrBgw0rYVwp0UpMWNqFhLO3KSPd_r7owLfO5U4JiSkibBskzE-Z7onNjyndeD8L-5E5pfB5zvufBRSwMcqJAdwZhQ1qW-IZGc6wbLBlFFpZzc3s1uYztAJ8Gm2s1CdHlj9Yb37icnVY0xY0ng1Szg3dUIIfJhmkrqsQU3Tu-mhDRlQ-uEvvgHvbu6mepFKkBb5ZKvnET5KU2mpKhZkaj1HVT6Ohi0TONSOsUXCa8XCYmJ8Cv2YgyBn3_98v_s5Y8l-_KA3YAwcROcGaN2NixBugeldyF4ULdNxohPW3HTDT5tBZ-3IqU9OxzQbdLNGpC_EpIKLA</recordid><startdate>20130923</startdate><enddate>20130923</enddate><creator>Li, Yuping</creator><creator>Aparicio, Conrado</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130923</creationdate><title>Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone</title><author>Li, Yuping ; Aparicio, Conrado</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-6e498cbe74c5314cae62f57acbec6e3ffb9d1ea61f6e63bb701dca3b19a76b4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - physiology</topic><topic>Bone and Bones - ultrastructure</topic><topic>Calcification, Physiologic</topic><topic>Calcium</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Cattle</topic><topic>Collagen</topic><topic>Collagen Type I - chemistry</topic><topic>Collagen Type I - metabolism</topic><topic>Core-shell structure</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Dental research</topic><topic>Dentistry</topic><topic>Fibrils</topic><topic>Fracture toughness</topic><topic>Hydroxyapatite</topic><topic>Hydroxyapatites</topic><topic>Mechanical properties</topic><topic>Microfibrils</topic><topic>Mineralization</topic><topic>Models, Biological</topic><topic>Multifunctional materials</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Organic chemistry</topic><topic>Phosphates</topic><topic>Polymers</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Tissues</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuping</creatorcontrib><creatorcontrib>Aparicio, Conrado</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuping</au><au>Aparicio, Conrado</au><au>Malaval, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-23</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e76782</spage><epage>e76782</epage><pages>e76782-e76782</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Biomineralization templated by organic molecules to produce inorganic-organic nanocomposites is a fascinating example of nature using bottom-up strategies at nanoscale to accomplish highly ordered multifunctional materials. One such nanocomposite is bone, composed primarily of hydroxyapatite (HA) nanocrystals that are embedded within collagen fibrils with their c-axes arranged roughly parallel to the long axis of the fibrils. Here we discern the ultra-structure of biomimetic mineralized collagen fibrils (MCFs) as consisting of bundles of subfibrils with approximately 10 nm diameter; each one with an organic-inorganic core-shell structure. Through an amorphous calcium phosphate precursor phase the HA nanocrystals were specifically grown along the longitudinal direction of the collagen microfibrils and encapsulated them within the crystal lattice. They intercalated throughout the collagen fibrils such that the mineral phase surrounded the surface of collagen microfibrils forming an interdigitated network. It appears that this arrangement of collagen microfibrils in collagen fibrils is responsible for the observed ultrastructure. Such a subfibrillar nanostructure in MCFs was identified in both synthetic and natural bone, suggesting this is the basic building block of collagen-based hard tissues. Insights into the ultrastructure of mineralized collagen fibrils have the potential to advance our understanding on the biomineralization principles and the relationship between bone's structure and mechanical properties, including fracture toughness mechanisms. We anticipate that these principles from biological systems can be applied to the rational design of new nanocomposites with improved performance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24086763</pmid><doi>10.1371/journal.pone.0076782</doi><tpages>e76782</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-09, Vol.8 (9), p.e76782-e76782
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1435431455
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Biomechanical Phenomena
Biomechanics
Biomedical materials
Biomimetics
Bone and Bones - metabolism
Bone and Bones - physiology
Bone and Bones - ultrastructure
Calcification, Physiologic
Calcium
Calcium phosphate
Calcium phosphates
Cattle
Collagen
Collagen Type I - chemistry
Collagen Type I - metabolism
Core-shell structure
Crystal lattices
Crystals
Dental research
Dentistry
Fibrils
Fracture toughness
Hydroxyapatite
Hydroxyapatites
Mechanical properties
Microfibrils
Mineralization
Models, Biological
Multifunctional materials
Nanocomposites
Nanocrystals
Organic chemistry
Phosphates
Polymers
Studies
Surgical implants
Tissues
Ultrastructure
title Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discerning%20the%20subfibrillar%20structure%20of%20mineralized%20collagen%20fibrils:%20a%20model%20for%20the%20ultrastructure%20of%20bone&rft.jtitle=PloS%20one&rft.au=Li,%20Yuping&rft.date=2013-09-23&rft.volume=8&rft.issue=9&rft.spage=e76782&rft.epage=e76782&rft.pages=e76782-e76782&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0076782&rft_dat=%3Cgale_plos_%3EA478132862%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1435431455&rft_id=info:pmid/24086763&rft_galeid=A478132862&rft_doaj_id=oai_doaj_org_article_e4acd311346d4080aea6891c904f4ccd&rfr_iscdi=true