Quantitative models of the dose-response and time course of inhalational anthrax in humans
Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health intervention strategies under specific scenarios. Analyse...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2013-08, Vol.9 (8), p.e1003555-e1003555 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003555 |
---|---|
container_issue | 8 |
container_start_page | e1003555 |
container_title | PLoS pathogens |
container_volume | 9 |
creator | Toth, Damon J A Gundlapalli, Adi V Schell, Wiley A Bulmahn, Kenneth Walton, Thomas E Woods, Christopher W Coghill, Catherine Gallegos, Frank Samore, Matthew H Adler, Frederick R |
description | Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health intervention strategies under specific scenarios. Analyses of available data from exposures and infections of humans and non-human primates are often contradictory. We review existing quantitative inhalational anthrax dose-response models in light of criteria we propose for a model to be useful and defensible. To satisfy these criteria, we extend an existing mechanistic competing-risks model to create a novel Exposure-Infection-Symptomatic illness-Death (EISD) model and use experimental non-human primate data and human epidemiological data to optimize parameter values. The best fit to these data leads to estimates of a dose leading to infection in 50% of susceptible humans (ID50) of 11,000 spores (95% confidence interval 7,200-17,000), ID10 of 1,700 (1,100-2,600), and ID1 of 160 (100-250). These estimates suggest that use of a threshold to human infection of 600 spores (as suggested in the literature) underestimates the infectivity of low doses, while an existing estimate of a 1% infection rate for a single spore overestimates low dose infectivity. We estimate the median time from exposure to onset of symptoms (incubation period) among untreated cases to be 9.9 days (7.7-13.1) for exposure to ID50, 11.8 days (9.5-15.0) for ID10, and 12.1 days (9.9-15.3) for ID1. Our model is the first to provide incubation period estimates that are independently consistent with data from the largest known human outbreak. This model refines previous estimates of the distribution of early onset cases after a release and provides support for the recommended 60-day course of prophylactic antibiotic treatment for individuals exposed to low doses. |
doi_str_mv | 10.1371/journal.ppat.1003555 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1433017724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A345458409</galeid><doaj_id>oai_doaj_org_article_ce8ecd5e3e8345b3aab79079c062f0a2</doaj_id><sourcerecordid>A345458409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-b2158e1728c33cb2b577d072dd673569a1631c810a6828bcc98a6640e887251b3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHLH7GzgWpqnisVIF4XbhYE2eym1Vib22nKt8eL7utuifEyfbMb_7z8BTFc0oWlCv6duPn4GBcbLeQFpQQLqV8UJxSKXmluBIP791PiicxbggRlNP6cXHCBJGaM3Ja_Po6g0tDgjRcYzn5DsdY-r5Mayw7H7EKGLfeRSzBdWUaJixtTpzfGRrcGsYc6XMd2Z_WAW6ysVzPE7j4tHjUwxjx2eE8K35-eP_j4lN1-eXj8uL8srI1U6lqGZUaqWLacm5b1kqlOqJY19WKy7oBWnNqNSVQa6ZbaxsNdS0Iaq2YpC0_K17udbejj-Ywlmio4JxQpZjIxHJPdB42ZhuGCcJv42Ewfw0-rAyENNgRjUWNtpPIUXMhWw7QqoaoxpKa9QRY1np3yDa3E3YWXQowHokee9ywNit_bfI3CMHrLPD6IBD81YwxmWmIFscRHPo5160oYYJxTf-NCi61UI0gGX21R1eQuxhc73Nyu8PNeW5EZI40mXpzRFnvEt6kFcwxmuX3b__Bfj5mxZ61wccYsL-bByVmt62332J222oO25rDXtyf5V3Q7XryPy6N5XQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435847940</pqid></control><display><type>article</type><title>Quantitative models of the dose-response and time course of inhalational anthrax in humans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Toth, Damon J A ; Gundlapalli, Adi V ; Schell, Wiley A ; Bulmahn, Kenneth ; Walton, Thomas E ; Woods, Christopher W ; Coghill, Catherine ; Gallegos, Frank ; Samore, Matthew H ; Adler, Frederick R</creator><creatorcontrib>Toth, Damon J A ; Gundlapalli, Adi V ; Schell, Wiley A ; Bulmahn, Kenneth ; Walton, Thomas E ; Woods, Christopher W ; Coghill, Catherine ; Gallegos, Frank ; Samore, Matthew H ; Adler, Frederick R</creatorcontrib><description>Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health intervention strategies under specific scenarios. Analyses of available data from exposures and infections of humans and non-human primates are often contradictory. We review existing quantitative inhalational anthrax dose-response models in light of criteria we propose for a model to be useful and defensible. To satisfy these criteria, we extend an existing mechanistic competing-risks model to create a novel Exposure-Infection-Symptomatic illness-Death (EISD) model and use experimental non-human primate data and human epidemiological data to optimize parameter values. The best fit to these data leads to estimates of a dose leading to infection in 50% of susceptible humans (ID50) of 11,000 spores (95% confidence interval 7,200-17,000), ID10 of 1,700 (1,100-2,600), and ID1 of 160 (100-250). These estimates suggest that use of a threshold to human infection of 600 spores (as suggested in the literature) underestimates the infectivity of low doses, while an existing estimate of a 1% infection rate for a single spore overestimates low dose infectivity. We estimate the median time from exposure to onset of symptoms (incubation period) among untreated cases to be 9.9 days (7.7-13.1) for exposure to ID50, 11.8 days (9.5-15.0) for ID10, and 12.1 days (9.9-15.3) for ID1. Our model is the first to provide incubation period estimates that are independently consistent with data from the largest known human outbreak. This model refines previous estimates of the distribution of early onset cases after a release and provides support for the recommended 60-day course of prophylactic antibiotic treatment for individuals exposed to low doses.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1003555</identifier><identifier>PMID: 24058320</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Administration, Inhalation ; aerosols ; Anthrax ; Anthrax - drug therapy ; Anthrax - microbiology ; Anthrax - transmission ; Anti-Bacterial Agents - therapeutic use ; Antibiotics ; Bacillus anthracis - growth & development ; Biology ; Biomedical research ; community health ; confidence interval ; Confidence intervals ; Disease susceptibility ; dose response ; Epidemiology ; Estimates ; Health risk assessment ; Host-parasite relationships ; human diseases ; Humans ; Medicine ; Models, Biological ; Models, Statistical ; Monkeys & apes ; pathogenicity ; pathogens ; Physiological aspects ; Primates ; Public health ; risk ; Risk assessment ; spores ; Studies ; Time Factors ; United States - epidemiology</subject><ispartof>PLoS pathogens, 2013-08, Vol.9 (8), p.e1003555-e1003555</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013</rights><rights>2013 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Toth DJA, Gundlapalli AV, Schell WA, Bulmahn K, Walton TE, et al. (2013) Quantitative Models of the Dose-Response and Time Course of Inhalational Anthrax in Humans. PLoS Pathog 9(8): e1003555. doi:10.1371/journal.ppat.1003555</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-b2158e1728c33cb2b577d072dd673569a1631c810a6828bcc98a6640e887251b3</citedby><cites>FETCH-LOGICAL-c627t-b2158e1728c33cb2b577d072dd673569a1631c810a6828bcc98a6640e887251b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24058320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toth, Damon J A</creatorcontrib><creatorcontrib>Gundlapalli, Adi V</creatorcontrib><creatorcontrib>Schell, Wiley A</creatorcontrib><creatorcontrib>Bulmahn, Kenneth</creatorcontrib><creatorcontrib>Walton, Thomas E</creatorcontrib><creatorcontrib>Woods, Christopher W</creatorcontrib><creatorcontrib>Coghill, Catherine</creatorcontrib><creatorcontrib>Gallegos, Frank</creatorcontrib><creatorcontrib>Samore, Matthew H</creatorcontrib><creatorcontrib>Adler, Frederick R</creatorcontrib><title>Quantitative models of the dose-response and time course of inhalational anthrax in humans</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health intervention strategies under specific scenarios. Analyses of available data from exposures and infections of humans and non-human primates are often contradictory. We review existing quantitative inhalational anthrax dose-response models in light of criteria we propose for a model to be useful and defensible. To satisfy these criteria, we extend an existing mechanistic competing-risks model to create a novel Exposure-Infection-Symptomatic illness-Death (EISD) model and use experimental non-human primate data and human epidemiological data to optimize parameter values. The best fit to these data leads to estimates of a dose leading to infection in 50% of susceptible humans (ID50) of 11,000 spores (95% confidence interval 7,200-17,000), ID10 of 1,700 (1,100-2,600), and ID1 of 160 (100-250). These estimates suggest that use of a threshold to human infection of 600 spores (as suggested in the literature) underestimates the infectivity of low doses, while an existing estimate of a 1% infection rate for a single spore overestimates low dose infectivity. We estimate the median time from exposure to onset of symptoms (incubation period) among untreated cases to be 9.9 days (7.7-13.1) for exposure to ID50, 11.8 days (9.5-15.0) for ID10, and 12.1 days (9.9-15.3) for ID1. Our model is the first to provide incubation period estimates that are independently consistent with data from the largest known human outbreak. This model refines previous estimates of the distribution of early onset cases after a release and provides support for the recommended 60-day course of prophylactic antibiotic treatment for individuals exposed to low doses.</description><subject>Administration, Inhalation</subject><subject>aerosols</subject><subject>Anthrax</subject><subject>Anthrax - drug therapy</subject><subject>Anthrax - microbiology</subject><subject>Anthrax - transmission</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotics</subject><subject>Bacillus anthracis - growth & development</subject><subject>Biology</subject><subject>Biomedical research</subject><subject>community health</subject><subject>confidence interval</subject><subject>Confidence intervals</subject><subject>Disease susceptibility</subject><subject>dose response</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Health risk assessment</subject><subject>Host-parasite relationships</subject><subject>human diseases</subject><subject>Humans</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monkeys & apes</subject><subject>pathogenicity</subject><subject>pathogens</subject><subject>Physiological aspects</subject><subject>Primates</subject><subject>Public health</subject><subject>risk</subject><subject>Risk assessment</subject><subject>spores</subject><subject>Studies</subject><subject>Time Factors</subject><subject>United States - epidemiology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHLH7GzgWpqnisVIF4XbhYE2eym1Vib22nKt8eL7utuifEyfbMb_7z8BTFc0oWlCv6duPn4GBcbLeQFpQQLqV8UJxSKXmluBIP791PiicxbggRlNP6cXHCBJGaM3Ja_Po6g0tDgjRcYzn5DsdY-r5Mayw7H7EKGLfeRSzBdWUaJixtTpzfGRrcGsYc6XMd2Z_WAW6ysVzPE7j4tHjUwxjx2eE8K35-eP_j4lN1-eXj8uL8srI1U6lqGZUaqWLacm5b1kqlOqJY19WKy7oBWnNqNSVQa6ZbaxsNdS0Iaq2YpC0_K17udbejj-Ywlmio4JxQpZjIxHJPdB42ZhuGCcJv42Ewfw0-rAyENNgRjUWNtpPIUXMhWw7QqoaoxpKa9QRY1np3yDa3E3YWXQowHokee9ywNit_bfI3CMHrLPD6IBD81YwxmWmIFscRHPo5160oYYJxTf-NCi61UI0gGX21R1eQuxhc73Nyu8PNeW5EZI40mXpzRFnvEt6kFcwxmuX3b__Bfj5mxZ61wccYsL-bByVmt62332J222oO25rDXtyf5V3Q7XryPy6N5XQ</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Toth, Damon J A</creator><creator>Gundlapalli, Adi V</creator><creator>Schell, Wiley A</creator><creator>Bulmahn, Kenneth</creator><creator>Walton, Thomas E</creator><creator>Woods, Christopher W</creator><creator>Coghill, Catherine</creator><creator>Gallegos, Frank</creator><creator>Samore, Matthew H</creator><creator>Adler, Frederick R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130801</creationdate><title>Quantitative models of the dose-response and time course of inhalational anthrax in humans</title><author>Toth, Damon J A ; Gundlapalli, Adi V ; Schell, Wiley A ; Bulmahn, Kenneth ; Walton, Thomas E ; Woods, Christopher W ; Coghill, Catherine ; Gallegos, Frank ; Samore, Matthew H ; Adler, Frederick R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-b2158e1728c33cb2b577d072dd673569a1631c810a6828bcc98a6640e887251b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Administration, Inhalation</topic><topic>aerosols</topic><topic>Anthrax</topic><topic>Anthrax - drug therapy</topic><topic>Anthrax - microbiology</topic><topic>Anthrax - transmission</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotics</topic><topic>Bacillus anthracis - growth & development</topic><topic>Biology</topic><topic>Biomedical research</topic><topic>community health</topic><topic>confidence interval</topic><topic>Confidence intervals</topic><topic>Disease susceptibility</topic><topic>dose response</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Health risk assessment</topic><topic>Host-parasite relationships</topic><topic>human diseases</topic><topic>Humans</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monkeys & apes</topic><topic>pathogenicity</topic><topic>pathogens</topic><topic>Physiological aspects</topic><topic>Primates</topic><topic>Public health</topic><topic>risk</topic><topic>Risk assessment</topic><topic>spores</topic><topic>Studies</topic><topic>Time Factors</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toth, Damon J A</creatorcontrib><creatorcontrib>Gundlapalli, Adi V</creatorcontrib><creatorcontrib>Schell, Wiley A</creatorcontrib><creatorcontrib>Bulmahn, Kenneth</creatorcontrib><creatorcontrib>Walton, Thomas E</creatorcontrib><creatorcontrib>Woods, Christopher W</creatorcontrib><creatorcontrib>Coghill, Catherine</creatorcontrib><creatorcontrib>Gallegos, Frank</creatorcontrib><creatorcontrib>Samore, Matthew H</creatorcontrib><creatorcontrib>Adler, Frederick R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toth, Damon J A</au><au>Gundlapalli, Adi V</au><au>Schell, Wiley A</au><au>Bulmahn, Kenneth</au><au>Walton, Thomas E</au><au>Woods, Christopher W</au><au>Coghill, Catherine</au><au>Gallegos, Frank</au><au>Samore, Matthew H</au><au>Adler, Frederick R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative models of the dose-response and time course of inhalational anthrax in humans</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>9</volume><issue>8</issue><spage>e1003555</spage><epage>e1003555</epage><pages>e1003555-e1003555</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health intervention strategies under specific scenarios. Analyses of available data from exposures and infections of humans and non-human primates are often contradictory. We review existing quantitative inhalational anthrax dose-response models in light of criteria we propose for a model to be useful and defensible. To satisfy these criteria, we extend an existing mechanistic competing-risks model to create a novel Exposure-Infection-Symptomatic illness-Death (EISD) model and use experimental non-human primate data and human epidemiological data to optimize parameter values. The best fit to these data leads to estimates of a dose leading to infection in 50% of susceptible humans (ID50) of 11,000 spores (95% confidence interval 7,200-17,000), ID10 of 1,700 (1,100-2,600), and ID1 of 160 (100-250). These estimates suggest that use of a threshold to human infection of 600 spores (as suggested in the literature) underestimates the infectivity of low doses, while an existing estimate of a 1% infection rate for a single spore overestimates low dose infectivity. We estimate the median time from exposure to onset of symptoms (incubation period) among untreated cases to be 9.9 days (7.7-13.1) for exposure to ID50, 11.8 days (9.5-15.0) for ID10, and 12.1 days (9.9-15.3) for ID1. Our model is the first to provide incubation period estimates that are independently consistent with data from the largest known human outbreak. This model refines previous estimates of the distribution of early onset cases after a release and provides support for the recommended 60-day course of prophylactic antibiotic treatment for individuals exposed to low doses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24058320</pmid><doi>10.1371/journal.ppat.1003555</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2013-08, Vol.9 (8), p.e1003555-e1003555 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1433017724 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Administration, Inhalation aerosols Anthrax Anthrax - drug therapy Anthrax - microbiology Anthrax - transmission Anti-Bacterial Agents - therapeutic use Antibiotics Bacillus anthracis - growth & development Biology Biomedical research community health confidence interval Confidence intervals Disease susceptibility dose response Epidemiology Estimates Health risk assessment Host-parasite relationships human diseases Humans Medicine Models, Biological Models, Statistical Monkeys & apes pathogenicity pathogens Physiological aspects Primates Public health risk Risk assessment spores Studies Time Factors United States - epidemiology |
title | Quantitative models of the dose-response and time course of inhalational anthrax in humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20models%20of%20the%20dose-response%20and%20time%20course%20of%20inhalational%20anthrax%20in%20humans&rft.jtitle=PLoS%20pathogens&rft.au=Toth,%20Damon%20J%20A&rft.date=2013-08-01&rft.volume=9&rft.issue=8&rft.spage=e1003555&rft.epage=e1003555&rft.pages=e1003555-e1003555&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1003555&rft_dat=%3Cgale_plos_%3EA345458409%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1435847940&rft_id=info:pmid/24058320&rft_galeid=A345458409&rft_doaj_id=oai_doaj_org_article_ce8ecd5e3e8345b3aab79079c062f0a2&rfr_iscdi=true |