A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes

GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2013-08, Vol.9 (8), p.e1003684-e1003684
Hauptverfasser: Capra, John A, Hubisz, Melissa J, Kostka, Dennis, Pollard, Katherine S, Siepel, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003684
container_issue 8
container_start_page e1003684
container_title PLoS genetics
container_volume 9
creator Capra, John A
Hubisz, Melissa J
Kostka, Dennis
Pollard, Katherine S
Siepel, Adam
description GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.
doi_str_mv 10.1371/journal.pgen.1003684
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1433013952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A345692846</galeid><doaj_id>oai_doaj_org_article_bff3350cc3614ef7bab9643c228cd59d</doaj_id><sourcerecordid>A345692846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c764t-b1b3b89fcffdfc4ddbba9a28b7b5eb1b9bd96ecf977fc7f964c17d3ad234f3fd3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLguhFx6ZJm-ZGGAZdBxYX_LwM-TiZZmiT2aZdXH-96c7sMgUvlFwknDzvew45OUnyHOULhCl6t_Vj70S72G3ALVCe46omD5JTVJY4oyQnD4_OJ8mTELaRKWtGHycnBWZVVVfsNPm5TDuvoc2kCKBTER1vgg2pN-n5KpP2NhozQKq8u4Y-WO9S69KhgbQZO-GiRKeqsd1OuN8AE-s7CE-TR0a0AZ4d9rPk-8cP31afsovL8_VqeZEpWpEhk0hiWTOjjNFGEa2lFEwUtaSyhHjJpGYVKMMoNYoaVhGFqMZCF5gYbDQ-S17ufXetD_zwJoEjgnGOMCuLSKz3hPZiy3e97UR_w72w_Dbg-w0X_WBVC1wag3GZK4UrRMBQKWTMiFVR1EqXbMr2_pBtlB1oBW7oRTsznd842_CNv-aYEkLwVMybg0Hvr0YIA-9sUNC2woEfp7oLSgmrMYroqz26EbE064yPjmrC-RKTsmJFTapILf5CxaWhs7FlYGyMzwRvZ4LIDPBr2IgxBL7--uU_2M__zl7-mLOvj9gGRDs0wbfjED9XmINkD6reh9CDuX9qlPNpCu46zqcp4IcpiLIXx226F919e_wHlwMDqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427749831</pqid></control><display><type>article</type><title>A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Capra, John A ; Hubisz, Melissa J ; Kostka, Dennis ; Pollard, Katherine S ; Siepel, Adam</creator><contributor>Coop, Graham</contributor><creatorcontrib>Capra, John A ; Hubisz, Melissa J ; Kostka, Dennis ; Pollard, Katherine S ; Siepel, Adam ; Coop, Graham</creatorcontrib><description>GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003684</identifier><identifier>PMID: 23966869</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Base Sequence ; Bias ; Biology ; Chimpanzees ; Chromosome Mapping ; Evolution ; Evolution, Molecular ; Gene Conversion - genetics ; Gene expression ; Genetic aspects ; Genome ; Genomics ; Humans ; Mammals ; Models, Theoretical ; Mutation ; Pan troglodytes - genetics ; Phylogeny ; Physiological aspects ; Recombination, Genetic ; Selection, Genetic ; Sequence Alignment ; Studies</subject><ispartof>PLoS genetics, 2013-08, Vol.9 (8), p.e1003684-e1003684</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Capra et al 2013 Capra et al</rights><rights>2013 Capra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Capra JA, Hubisz MJ, Kostka D, Pollard KS, Siepel A (2013) A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes. PLoS Genet 9(8): e1003684. doi:10.1371/journal.pgen.1003684</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c764t-b1b3b89fcffdfc4ddbba9a28b7b5eb1b9bd96ecf977fc7f964c17d3ad234f3fd3</citedby><cites>FETCH-LOGICAL-c764t-b1b3b89fcffdfc4ddbba9a28b7b5eb1b9bd96ecf977fc7f964c17d3ad234f3fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744432/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744432/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23966869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Coop, Graham</contributor><creatorcontrib>Capra, John A</creatorcontrib><creatorcontrib>Hubisz, Melissa J</creatorcontrib><creatorcontrib>Kostka, Dennis</creatorcontrib><creatorcontrib>Pollard, Katherine S</creatorcontrib><creatorcontrib>Siepel, Adam</creatorcontrib><title>A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Bias</subject><subject>Biology</subject><subject>Chimpanzees</subject><subject>Chromosome Mapping</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Conversion - genetics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genome</subject><subject>Genomics</subject><subject>Humans</subject><subject>Mammals</subject><subject>Models, Theoretical</subject><subject>Mutation</subject><subject>Pan troglodytes - genetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Recombination, Genetic</subject><subject>Selection, Genetic</subject><subject>Sequence Alignment</subject><subject>Studies</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLguhFx6ZJm-ZGGAZdBxYX_LwM-TiZZmiT2aZdXH-96c7sMgUvlFwknDzvew45OUnyHOULhCl6t_Vj70S72G3ALVCe46omD5JTVJY4oyQnD4_OJ8mTELaRKWtGHycnBWZVVVfsNPm5TDuvoc2kCKBTER1vgg2pN-n5KpP2NhozQKq8u4Y-WO9S69KhgbQZO-GiRKeqsd1OuN8AE-s7CE-TR0a0AZ4d9rPk-8cP31afsovL8_VqeZEpWpEhk0hiWTOjjNFGEa2lFEwUtaSyhHjJpGYVKMMoNYoaVhGFqMZCF5gYbDQ-S17ufXetD_zwJoEjgnGOMCuLSKz3hPZiy3e97UR_w72w_Dbg-w0X_WBVC1wag3GZK4UrRMBQKWTMiFVR1EqXbMr2_pBtlB1oBW7oRTsznd842_CNv-aYEkLwVMybg0Hvr0YIA-9sUNC2woEfp7oLSgmrMYroqz26EbE064yPjmrC-RKTsmJFTapILf5CxaWhs7FlYGyMzwRvZ4LIDPBr2IgxBL7--uU_2M__zl7-mLOvj9gGRDs0wbfjED9XmINkD6reh9CDuX9qlPNpCu46zqcp4IcpiLIXx226F919e_wHlwMDqQ</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Capra, John A</creator><creator>Hubisz, Melissa J</creator><creator>Kostka, Dennis</creator><creator>Pollard, Katherine S</creator><creator>Siepel, Adam</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130801</creationdate><title>A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes</title><author>Capra, John A ; Hubisz, Melissa J ; Kostka, Dennis ; Pollard, Katherine S ; Siepel, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c764t-b1b3b89fcffdfc4ddbba9a28b7b5eb1b9bd96ecf977fc7f964c17d3ad234f3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Bias</topic><topic>Biology</topic><topic>Chimpanzees</topic><topic>Chromosome Mapping</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Conversion - genetics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genome</topic><topic>Genomics</topic><topic>Humans</topic><topic>Mammals</topic><topic>Models, Theoretical</topic><topic>Mutation</topic><topic>Pan troglodytes - genetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Recombination, Genetic</topic><topic>Selection, Genetic</topic><topic>Sequence Alignment</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capra, John A</creatorcontrib><creatorcontrib>Hubisz, Melissa J</creatorcontrib><creatorcontrib>Kostka, Dennis</creatorcontrib><creatorcontrib>Pollard, Katherine S</creatorcontrib><creatorcontrib>Siepel, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capra, John A</au><au>Hubisz, Melissa J</au><au>Kostka, Dennis</au><au>Pollard, Katherine S</au><au>Siepel, Adam</au><au>Coop, Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>9</volume><issue>8</issue><spage>e1003684</spage><epage>e1003684</epage><pages>e1003684-e1003684</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23966869</pmid><doi>10.1371/journal.pgen.1003684</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2013-08, Vol.9 (8), p.e1003684-e1003684
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1433013952
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Animals
Base Sequence
Bias
Biology
Chimpanzees
Chromosome Mapping
Evolution
Evolution, Molecular
Gene Conversion - genetics
Gene expression
Genetic aspects
Genome
Genomics
Humans
Mammals
Models, Theoretical
Mutation
Pan troglodytes - genetics
Phylogeny
Physiological aspects
Recombination, Genetic
Selection, Genetic
Sequence Alignment
Studies
title A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model-based%20analysis%20of%20GC-biased%20gene%20conversion%20in%20the%20human%20and%20chimpanzee%20genomes&rft.jtitle=PLoS%20genetics&rft.au=Capra,%20John%20A&rft.date=2013-08-01&rft.volume=9&rft.issue=8&rft.spage=e1003684&rft.epage=e1003684&rft.pages=e1003684-e1003684&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003684&rft_dat=%3Cgale_plos_%3EA345692846%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427749831&rft_id=info:pmid/23966869&rft_galeid=A345692846&rft_doaj_id=oai_doaj_org_article_bff3350cc3614ef7bab9643c228cd59d&rfr_iscdi=true