Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions

Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-08, Vol.8 (8), p.e71845-e71845
Hauptverfasser: Tielen, Petra, Rosin, Nathalie, Meyer, Ann-Kathrin, Dohnt, Katrin, Haddad, Isam, Jänsch, Lothar, Klein, Johannes, Narten, Maike, Pommerenke, Claudia, Scheer, Maurice, Schobert, Max, Schomburg, Dietmar, Thielen, Bernhard, Jahn, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e71845
container_issue 8
container_start_page e71845
container_title PloS one
container_volume 8
creator Tielen, Petra
Rosin, Nathalie
Meyer, Ann-Kathrin
Dohnt, Katrin
Haddad, Isam
Jänsch, Lothar
Klein, Johannes
Narten, Maike
Pommerenke, Claudia
Scheer, Maurice
Schobert, Max
Schomburg, Dietmar
Thielen, Bernhard
Jahn, Dieter
description Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.
doi_str_mv 10.1371/journal.pone.0071845
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1430434455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478298183</galeid><doaj_id>oai_doaj_org_article_4a0a112f58044520933f29d70c88d4b7</doaj_id><sourcerecordid>A478298183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-745c7b1243a78676f45025a495a5be646731ae498d9b3e657512aaf3c22d446e3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxaz4nMzdCKX4sFCr14zacmcnsZptJ1iSj9d-b6W7LrvRCcpGQPO-bnHNyiuI5wXPCJHm39mNwYOcb7_QcY0kqLh4Ux6RmdFZSzB7urY-KJzGuMRasKsvHxRFldSmpoMfF9aVejhaSD38QuA4NOkHjrWmR0-m3D1cR9T6gtNIIOtgkSMY75Hv0Jeqx84N3EBHoMC6N8xFQY3xv7BBR8mgMxkH2TQHaNLPmSqPWu85MFvFp8agHG_Wz3XxSfP_44dvZ59n5xafF2en5rC1rmmaSi1Y2hHIGsipl2XOBqQBeCxCNLnkpGQHN66qrG6ZLIQWhAD1rKe04LzU7KV5ufTfWR7VLWlSEM8wZ50JkYrElOg9rtQlmyI9WHoy62fBhqSAk01qtOGAghPaiwllKcc1YT-tO4raqOt7I7PV-d9vYDLprtcvB2wPTwxNnVmrpfykmOeViMnizMwj-56hjUoOJrbYWnPbj9G4qZQ6X44y--ge9P7odtYQcgHG9n8oxmapTLitaV6RimZrfQ-XR6cHkoulcVH0oeHsgyEzS12kJY4xq8fXy_9mLH4fs6z12pcGmVfR2vPkzhyDfgm3wMQbd3yWZYDU1yG021NQgatcgWfZiv0B3otuOYH8BhdALoQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430434455</pqid></control><display><type>article</type><title>Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tielen, Petra ; Rosin, Nathalie ; Meyer, Ann-Kathrin ; Dohnt, Katrin ; Haddad, Isam ; Jänsch, Lothar ; Klein, Johannes ; Narten, Maike ; Pommerenke, Claudia ; Scheer, Maurice ; Schobert, Max ; Schomburg, Dietmar ; Thielen, Bernhard ; Jahn, Dieter</creator><creatorcontrib>Tielen, Petra ; Rosin, Nathalie ; Meyer, Ann-Kathrin ; Dohnt, Katrin ; Haddad, Isam ; Jänsch, Lothar ; Klein, Johannes ; Narten, Maike ; Pommerenke, Claudia ; Scheer, Maurice ; Schobert, Max ; Schomburg, Dietmar ; Thielen, Bernhard ; Jahn, Dieter</creatorcontrib><description>Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0071845</identifier><identifier>PMID: 23967252</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Adaptation ; Adaptation, Physiological ; Alginates - metabolism ; Alginic acid ; Amino acids ; Amino Acids, Aromatic - metabolism ; Analysis ; Antibiotics ; Bacterial infections ; Biochemistry ; Biofilms ; Bioinformatics ; Biology ; Biosynthesis ; Carbon sources ; Catheters ; Chemotaxis ; Chromatography ; Chromosomes ; Citric acid ; Creatinine ; Cross infection ; Cystic fibrosis ; Energy Metabolism ; Enzymatic activity ; Enzyme activity ; Enzymes ; Fatty acids ; Flagella ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Genomes ; Glucuronic Acid - metabolism ; Health aspects ; Hexuronic Acids - metabolism ; Infections ; Iron ; Iron - metabolism ; Lactates ; Lactic acid ; Leukemia ; LipA protein ; Lipase ; Lungs ; Mass spectrometry ; Metabolic networks ; Metabolic Networks and Pathways ; Metabolism ; Metabolites ; Metabolome ; Nosocomial infections ; Operons ; Phosphates ; Physiological aspects ; Polysaccharides ; Proteins ; Proteome ; Proteomes ; Proteomics ; Pseudomonas ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - physiology ; Pseudomonas Infections - microbiology ; Quorum Sensing ; Reduction ; Respiration ; Scientific imaging ; Stress, Physiological ; Urea ; Urinary tract ; Urinary tract diseases ; Urinary tract infections ; Urinary Tract Infections - microbiology ; Urine ; Urogenital system ; Virulence ; Virulence factors ; Virulence Factors - genetics ; Virulence Factors - metabolism</subject><ispartof>PloS one, 2013-08, Vol.8 (8), p.e71845-e71845</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-745c7b1243a78676f45025a495a5be646731ae498d9b3e657512aaf3c22d446e3</citedby><cites>FETCH-LOGICAL-c692t-745c7b1243a78676f45025a495a5be646731ae498d9b3e657512aaf3c22d446e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742457/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742457/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23967252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tielen, Petra</creatorcontrib><creatorcontrib>Rosin, Nathalie</creatorcontrib><creatorcontrib>Meyer, Ann-Kathrin</creatorcontrib><creatorcontrib>Dohnt, Katrin</creatorcontrib><creatorcontrib>Haddad, Isam</creatorcontrib><creatorcontrib>Jänsch, Lothar</creatorcontrib><creatorcontrib>Klein, Johannes</creatorcontrib><creatorcontrib>Narten, Maike</creatorcontrib><creatorcontrib>Pommerenke, Claudia</creatorcontrib><creatorcontrib>Scheer, Maurice</creatorcontrib><creatorcontrib>Schobert, Max</creatorcontrib><creatorcontrib>Schomburg, Dietmar</creatorcontrib><creatorcontrib>Thielen, Bernhard</creatorcontrib><creatorcontrib>Jahn, Dieter</creatorcontrib><title>Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.</description><subject>Acids</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Alginates - metabolism</subject><subject>Alginic acid</subject><subject>Amino acids</subject><subject>Amino Acids, Aromatic - metabolism</subject><subject>Analysis</subject><subject>Antibiotics</subject><subject>Bacterial infections</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Carbon sources</subject><subject>Catheters</subject><subject>Chemotaxis</subject><subject>Chromatography</subject><subject>Chromosomes</subject><subject>Citric acid</subject><subject>Creatinine</subject><subject>Cross infection</subject><subject>Cystic fibrosis</subject><subject>Energy Metabolism</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Flagella</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Regulatory Networks</subject><subject>Genomes</subject><subject>Glucuronic Acid - metabolism</subject><subject>Health aspects</subject><subject>Hexuronic Acids - metabolism</subject><subject>Infections</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Lactates</subject><subject>Lactic acid</subject><subject>Leukemia</subject><subject>LipA protein</subject><subject>Lipase</subject><subject>Lungs</subject><subject>Mass spectrometry</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Nosocomial infections</subject><subject>Operons</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Polysaccharides</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Pseudomonas</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Pseudomonas Infections - microbiology</subject><subject>Quorum Sensing</subject><subject>Reduction</subject><subject>Respiration</subject><subject>Scientific imaging</subject><subject>Stress, Physiological</subject><subject>Urea</subject><subject>Urinary tract</subject><subject>Urinary tract diseases</subject><subject>Urinary tract infections</subject><subject>Urinary Tract Infections - microbiology</subject><subject>Urine</subject><subject>Urogenital system</subject><subject>Virulence</subject><subject>Virulence factors</subject><subject>Virulence Factors - genetics</subject><subject>Virulence Factors - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIHqxaz4nMzdCKX4sFCr14zacmcnsZptJ1iSj9d-b6W7LrvRCcpGQPO-bnHNyiuI5wXPCJHm39mNwYOcb7_QcY0kqLh4Ux6RmdFZSzB7urY-KJzGuMRasKsvHxRFldSmpoMfF9aVejhaSD38QuA4NOkHjrWmR0-m3D1cR9T6gtNIIOtgkSMY75Hv0Jeqx84N3EBHoMC6N8xFQY3xv7BBR8mgMxkH2TQHaNLPmSqPWu85MFvFp8agHG_Wz3XxSfP_44dvZ59n5xafF2en5rC1rmmaSi1Y2hHIGsipl2XOBqQBeCxCNLnkpGQHN66qrG6ZLIQWhAD1rKe04LzU7KV5ufTfWR7VLWlSEM8wZ50JkYrElOg9rtQlmyI9WHoy62fBhqSAk01qtOGAghPaiwllKcc1YT-tO4raqOt7I7PV-d9vYDLprtcvB2wPTwxNnVmrpfykmOeViMnizMwj-56hjUoOJrbYWnPbj9G4qZQ6X44y--ge9P7odtYQcgHG9n8oxmapTLitaV6RimZrfQ-XR6cHkoulcVH0oeHsgyEzS12kJY4xq8fXy_9mLH4fs6z12pcGmVfR2vPkzhyDfgm3wMQbd3yWZYDU1yG021NQgatcgWfZiv0B3otuOYH8BhdALoQ</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>Tielen, Petra</creator><creator>Rosin, Nathalie</creator><creator>Meyer, Ann-Kathrin</creator><creator>Dohnt, Katrin</creator><creator>Haddad, Isam</creator><creator>Jänsch, Lothar</creator><creator>Klein, Johannes</creator><creator>Narten, Maike</creator><creator>Pommerenke, Claudia</creator><creator>Scheer, Maurice</creator><creator>Schobert, Max</creator><creator>Schomburg, Dietmar</creator><creator>Thielen, Bernhard</creator><creator>Jahn, Dieter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130813</creationdate><title>Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions</title><author>Tielen, Petra ; Rosin, Nathalie ; Meyer, Ann-Kathrin ; Dohnt, Katrin ; Haddad, Isam ; Jänsch, Lothar ; Klein, Johannes ; Narten, Maike ; Pommerenke, Claudia ; Scheer, Maurice ; Schobert, Max ; Schomburg, Dietmar ; Thielen, Bernhard ; Jahn, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-745c7b1243a78676f45025a495a5be646731ae498d9b3e657512aaf3c22d446e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Alginates - metabolism</topic><topic>Alginic acid</topic><topic>Amino acids</topic><topic>Amino Acids, Aromatic - metabolism</topic><topic>Analysis</topic><topic>Antibiotics</topic><topic>Bacterial infections</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Carbon sources</topic><topic>Catheters</topic><topic>Chemotaxis</topic><topic>Chromatography</topic><topic>Chromosomes</topic><topic>Citric acid</topic><topic>Creatinine</topic><topic>Cross infection</topic><topic>Cystic fibrosis</topic><topic>Energy Metabolism</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Flagella</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Regulatory Networks</topic><topic>Genomes</topic><topic>Glucuronic Acid - metabolism</topic><topic>Health aspects</topic><topic>Hexuronic Acids - metabolism</topic><topic>Infections</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Lactates</topic><topic>Lactic acid</topic><topic>Leukemia</topic><topic>LipA protein</topic><topic>Lipase</topic><topic>Lungs</topic><topic>Mass spectrometry</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Nosocomial infections</topic><topic>Operons</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Polysaccharides</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Pseudomonas</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Pseudomonas Infections - microbiology</topic><topic>Quorum Sensing</topic><topic>Reduction</topic><topic>Respiration</topic><topic>Scientific imaging</topic><topic>Stress, Physiological</topic><topic>Urea</topic><topic>Urinary tract</topic><topic>Urinary tract diseases</topic><topic>Urinary tract infections</topic><topic>Urinary Tract Infections - microbiology</topic><topic>Urine</topic><topic>Urogenital system</topic><topic>Virulence</topic><topic>Virulence factors</topic><topic>Virulence Factors - genetics</topic><topic>Virulence Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tielen, Petra</creatorcontrib><creatorcontrib>Rosin, Nathalie</creatorcontrib><creatorcontrib>Meyer, Ann-Kathrin</creatorcontrib><creatorcontrib>Dohnt, Katrin</creatorcontrib><creatorcontrib>Haddad, Isam</creatorcontrib><creatorcontrib>Jänsch, Lothar</creatorcontrib><creatorcontrib>Klein, Johannes</creatorcontrib><creatorcontrib>Narten, Maike</creatorcontrib><creatorcontrib>Pommerenke, Claudia</creatorcontrib><creatorcontrib>Scheer, Maurice</creatorcontrib><creatorcontrib>Schobert, Max</creatorcontrib><creatorcontrib>Schomburg, Dietmar</creatorcontrib><creatorcontrib>Thielen, Bernhard</creatorcontrib><creatorcontrib>Jahn, Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tielen, Petra</au><au>Rosin, Nathalie</au><au>Meyer, Ann-Kathrin</au><au>Dohnt, Katrin</au><au>Haddad, Isam</au><au>Jänsch, Lothar</au><au>Klein, Johannes</au><au>Narten, Maike</au><au>Pommerenke, Claudia</au><au>Scheer, Maurice</au><au>Schobert, Max</au><au>Schomburg, Dietmar</au><au>Thielen, Bernhard</au><au>Jahn, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-08-13</date><risdate>2013</risdate><volume>8</volume><issue>8</issue><spage>e71845</spage><epage>e71845</epage><pages>e71845-e71845</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23967252</pmid><doi>10.1371/journal.pone.0071845</doi><tpages>e71845</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-08, Vol.8 (8), p.e71845-e71845
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1430434455
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Acids
Adaptation
Adaptation, Physiological
Alginates - metabolism
Alginic acid
Amino acids
Amino Acids, Aromatic - metabolism
Analysis
Antibiotics
Bacterial infections
Biochemistry
Biofilms
Bioinformatics
Biology
Biosynthesis
Carbon sources
Catheters
Chemotaxis
Chromatography
Chromosomes
Citric acid
Creatinine
Cross infection
Cystic fibrosis
Energy Metabolism
Enzymatic activity
Enzyme activity
Enzymes
Fatty acids
Flagella
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Genomes
Glucuronic Acid - metabolism
Health aspects
Hexuronic Acids - metabolism
Infections
Iron
Iron - metabolism
Lactates
Lactic acid
Leukemia
LipA protein
Lipase
Lungs
Mass spectrometry
Metabolic networks
Metabolic Networks and Pathways
Metabolism
Metabolites
Metabolome
Nosocomial infections
Operons
Phosphates
Physiological aspects
Polysaccharides
Proteins
Proteome
Proteomes
Proteomics
Pseudomonas
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
Pseudomonas Infections - microbiology
Quorum Sensing
Reduction
Respiration
Scientific imaging
Stress, Physiological
Urea
Urinary tract
Urinary tract diseases
Urinary tract infections
Urinary Tract Infections - microbiology
Urine
Urogenital system
Virulence
Virulence factors
Virulence Factors - genetics
Virulence Factors - metabolism
title Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulatory%20and%20metabolic%20networks%20for%20the%20adaptation%20of%20Pseudomonas%20aeruginosa%20biofilms%20to%20urinary%20tract-like%20conditions&rft.jtitle=PloS%20one&rft.au=Tielen,%20Petra&rft.date=2013-08-13&rft.volume=8&rft.issue=8&rft.spage=e71845&rft.epage=e71845&rft.pages=e71845-e71845&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0071845&rft_dat=%3Cgale_plos_%3EA478298183%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430434455&rft_id=info:pmid/23967252&rft_galeid=A478298183&rft_doaj_id=oai_doaj_org_article_4a0a112f58044520933f29d70c88d4b7&rfr_iscdi=true