High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans

α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-08, Vol.8 (8), p.e71180-e71180
Hauptverfasser: Li, Yiping, Li, Yinxia, Wu, Qiuli, Ye, Huayue, Sun, Lingmei, Ye, Boping, Wang, Dayong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e71180
container_issue 8
container_start_page e71180
container_title PloS one
container_volume 8
creator Li, Yiping
Li, Yinxia
Wu, Qiuli
Ye, Huayue
Sun, Lingmei
Ye, Boping
Wang, Dayong
description α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.
doi_str_mv 10.1371/journal.pone.0071180
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1430421050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478310970</galeid><doaj_id>oai_doaj_org_article_f980beb7f9b54c039177ba06cae3813c</doaj_id><sourcerecordid>A478310970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9545045d172d4d33829bc4c48be69b26270d9807d4764ca26ac55d62eb094b1c3</originalsourceid><addsrcrecordid>eNqNk81q3DAQx01padK0b1BaQ6G0h91Klvx1KYSQNoFAoF9XMZbGthZbSiQ5JE_S163cdcJuyaHoIDHzm_9Io5kkeU3JmrKSftrYyRkY1lfW4JqQktKKPEkOac2yVZER9nTnfJC88H5DSM6qonieHGSszikl_DD5faa7PpXWSDTBQdDWpLZNb3SAUZv0NFUoHYJHn4Ye3Wg9Gr_FwKjFFuBW-3RAcEab7t6RTkahG-5m04iyB6P96NOoOjsNjhCswvQE0FjXQ6N0iCo4YAfGv0yetTB4fLXsR8nPL6c_Ts5WF5dfz0-OL1ayqLOwqnOeE54rWmaKK8aqrG4kl7xqsKibrMhKouqKlIqXBZeQFSDzXBUZNqTmDZXsKHm71b0arBdLTb2gnBGeUZKTSJxvCWVhI66cHsHdCQta_DVY1wlwQcsBRRtTNdiUbd3kXBJW07JsgBQSkFWUzdk-L9mmZkS1rfmwJ7rvMboXnb0RrOSUFVUU-LAIOHs9oQ9i1F7iMIBBO833zgoSG4HxiL77B338dQvVQXyANq2NeeUsKo55WTFK6nKm1o9QcSkcdWwebHW07wV83AuITMDb0MHkvTj__u3_2ctf--z7HbZHGELv7TDNDen3Qb4FpbPeO2wfikyJmOfnvhpinh-xzE8Me7P7QQ9B9wPD_gAb9xe5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430421050</pqid></control><display><type>article</type><title>High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Li, Yiping ; Li, Yinxia ; Wu, Qiuli ; Ye, Huayue ; Sun, Lingmei ; Ye, Boping ; Wang, Dayong</creator><contributor>Gilestro, Giorgio F.</contributor><creatorcontrib>Li, Yiping ; Li, Yinxia ; Wu, Qiuli ; Ye, Huayue ; Sun, Lingmei ; Ye, Boping ; Wang, Dayong ; Gilestro, Giorgio F.</creatorcontrib><description>α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0071180</identifier><identifier>PMID: 23951104</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal cognition ; Animals ; Antioxidants ; Behavior ; Behavior, Animal - drug effects ; Biology ; Caenorhabditis elegans ; Caenorhabditis elegans - physiology ; Cytology ; Education ; Enzyme Activation - drug effects ; Fluorescence ; GABA ; GABAergic Neurons - drug effects ; GABAergic Neurons - metabolism ; Genetics ; In vivo methods and tests ; Interneurons ; Laboratories ; Learning ; Learning - drug effects ; Life sciences ; Locomotion ; Locomotion - drug effects ; Medical schools ; Medicine ; Memory ; Nematodes ; Neurons ; Neurotoxicity ; Observational learning ; Oxidative stress ; PCB ; Physiological aspects ; Physiological effects ; Physiology ; Polychlorinated biphenyls ; Protein Kinase C - metabolism ; Roundworms ; Sensory neurons ; Side effects ; Signal transduction ; Starvation ; Synaptic transmission ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Temperature ; Thermosensing - drug effects ; Thermosensing - physiology ; Thermotaxis ; Tocopherol ; Tocopherols ; Vitamin E ; Vitamin E - pharmacology ; Worms ; γ-Aminobutyric acid</subject><ispartof>PloS one, 2013-08, Vol.8 (8), p.e71180-e71180</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Li et al 2013 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9545045d172d4d33829bc4c48be69b26270d9807d4764ca26ac55d62eb094b1c3</citedby><cites>FETCH-LOGICAL-c692t-9545045d172d4d33829bc4c48be69b26270d9807d4764ca26ac55d62eb094b1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741368/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741368/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23951104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gilestro, Giorgio F.</contributor><creatorcontrib>Li, Yiping</creatorcontrib><creatorcontrib>Li, Yinxia</creatorcontrib><creatorcontrib>Wu, Qiuli</creatorcontrib><creatorcontrib>Ye, Huayue</creatorcontrib><creatorcontrib>Sun, Lingmei</creatorcontrib><creatorcontrib>Ye, Boping</creatorcontrib><creatorcontrib>Wang, Dayong</creatorcontrib><title>High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.</description><subject>Animal cognition</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Behavior</subject><subject>Behavior, Animal - drug effects</subject><subject>Biology</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Cytology</subject><subject>Education</subject><subject>Enzyme Activation - drug effects</subject><subject>Fluorescence</subject><subject>GABA</subject><subject>GABAergic Neurons - drug effects</subject><subject>GABAergic Neurons - metabolism</subject><subject>Genetics</subject><subject>In vivo methods and tests</subject><subject>Interneurons</subject><subject>Laboratories</subject><subject>Learning</subject><subject>Learning - drug effects</subject><subject>Life sciences</subject><subject>Locomotion</subject><subject>Locomotion - drug effects</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Memory</subject><subject>Nematodes</subject><subject>Neurons</subject><subject>Neurotoxicity</subject><subject>Observational learning</subject><subject>Oxidative stress</subject><subject>PCB</subject><subject>Physiological aspects</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Polychlorinated biphenyls</subject><subject>Protein Kinase C - metabolism</subject><subject>Roundworms</subject><subject>Sensory neurons</subject><subject>Side effects</subject><subject>Signal transduction</subject><subject>Starvation</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Temperature</subject><subject>Thermosensing - drug effects</subject><subject>Thermosensing - physiology</subject><subject>Thermotaxis</subject><subject>Tocopherol</subject><subject>Tocopherols</subject><subject>Vitamin E</subject><subject>Vitamin E - pharmacology</subject><subject>Worms</subject><subject>γ-Aminobutyric acid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk81q3DAQx01padK0b1BaQ6G0h91Klvx1KYSQNoFAoF9XMZbGthZbSiQ5JE_S163cdcJuyaHoIDHzm_9Io5kkeU3JmrKSftrYyRkY1lfW4JqQktKKPEkOac2yVZER9nTnfJC88H5DSM6qonieHGSszikl_DD5faa7PpXWSDTBQdDWpLZNb3SAUZv0NFUoHYJHn4Ye3Wg9Gr_FwKjFFuBW-3RAcEab7t6RTkahG-5m04iyB6P96NOoOjsNjhCswvQE0FjXQ6N0iCo4YAfGv0yetTB4fLXsR8nPL6c_Ts5WF5dfz0-OL1ayqLOwqnOeE54rWmaKK8aqrG4kl7xqsKibrMhKouqKlIqXBZeQFSDzXBUZNqTmDZXsKHm71b0arBdLTb2gnBGeUZKTSJxvCWVhI66cHsHdCQta_DVY1wlwQcsBRRtTNdiUbd3kXBJW07JsgBQSkFWUzdk-L9mmZkS1rfmwJ7rvMboXnb0RrOSUFVUU-LAIOHs9oQ9i1F7iMIBBO833zgoSG4HxiL77B338dQvVQXyANq2NeeUsKo55WTFK6nKm1o9QcSkcdWwebHW07wV83AuITMDb0MHkvTj__u3_2ctf--z7HbZHGELv7TDNDen3Qb4FpbPeO2wfikyJmOfnvhpinh-xzE8Me7P7QQ9B9wPD_gAb9xe5</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Li, Yiping</creator><creator>Li, Yinxia</creator><creator>Wu, Qiuli</creator><creator>Ye, Huayue</creator><creator>Sun, Lingmei</creator><creator>Ye, Boping</creator><creator>Wang, Dayong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130812</creationdate><title>High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans</title><author>Li, Yiping ; Li, Yinxia ; Wu, Qiuli ; Ye, Huayue ; Sun, Lingmei ; Ye, Boping ; Wang, Dayong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9545045d172d4d33829bc4c48be69b26270d9807d4764ca26ac55d62eb094b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal cognition</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Behavior</topic><topic>Behavior, Animal - drug effects</topic><topic>Biology</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Cytology</topic><topic>Education</topic><topic>Enzyme Activation - drug effects</topic><topic>Fluorescence</topic><topic>GABA</topic><topic>GABAergic Neurons - drug effects</topic><topic>GABAergic Neurons - metabolism</topic><topic>Genetics</topic><topic>In vivo methods and tests</topic><topic>Interneurons</topic><topic>Laboratories</topic><topic>Learning</topic><topic>Learning - drug effects</topic><topic>Life sciences</topic><topic>Locomotion</topic><topic>Locomotion - drug effects</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Memory</topic><topic>Nematodes</topic><topic>Neurons</topic><topic>Neurotoxicity</topic><topic>Observational learning</topic><topic>Oxidative stress</topic><topic>PCB</topic><topic>Physiological aspects</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Polychlorinated biphenyls</topic><topic>Protein Kinase C - metabolism</topic><topic>Roundworms</topic><topic>Sensory neurons</topic><topic>Side effects</topic><topic>Signal transduction</topic><topic>Starvation</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Temperature</topic><topic>Thermosensing - drug effects</topic><topic>Thermosensing - physiology</topic><topic>Thermotaxis</topic><topic>Tocopherol</topic><topic>Tocopherols</topic><topic>Vitamin E</topic><topic>Vitamin E - pharmacology</topic><topic>Worms</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiping</creatorcontrib><creatorcontrib>Li, Yinxia</creatorcontrib><creatorcontrib>Wu, Qiuli</creatorcontrib><creatorcontrib>Ye, Huayue</creatorcontrib><creatorcontrib>Sun, Lingmei</creatorcontrib><creatorcontrib>Ye, Boping</creatorcontrib><creatorcontrib>Wang, Dayong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiping</au><au>Li, Yinxia</au><au>Wu, Qiuli</au><au>Ye, Huayue</au><au>Sun, Lingmei</au><au>Ye, Boping</au><au>Wang, Dayong</au><au>Gilestro, Giorgio F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-08-12</date><risdate>2013</risdate><volume>8</volume><issue>8</issue><spage>e71180</spage><epage>e71180</epage><pages>e71180-e71180</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23951104</pmid><doi>10.1371/journal.pone.0071180</doi><tpages>e71180</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-08, Vol.8 (8), p.e71180-e71180
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1430421050
source MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Animal cognition
Animals
Antioxidants
Behavior
Behavior, Animal - drug effects
Biology
Caenorhabditis elegans
Caenorhabditis elegans - physiology
Cytology
Education
Enzyme Activation - drug effects
Fluorescence
GABA
GABAergic Neurons - drug effects
GABAergic Neurons - metabolism
Genetics
In vivo methods and tests
Interneurons
Laboratories
Learning
Learning - drug effects
Life sciences
Locomotion
Locomotion - drug effects
Medical schools
Medicine
Memory
Nematodes
Neurons
Neurotoxicity
Observational learning
Oxidative stress
PCB
Physiological aspects
Physiological effects
Physiology
Polychlorinated biphenyls
Protein Kinase C - metabolism
Roundworms
Sensory neurons
Side effects
Signal transduction
Starvation
Synaptic transmission
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Temperature
Thermosensing - drug effects
Thermosensing - physiology
Thermotaxis
Tocopherol
Tocopherols
Vitamin E
Vitamin E - pharmacology
Worms
γ-Aminobutyric acid
title High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20concentration%20of%20vitamin%20E%20decreases%20thermosensation%20and%20thermotaxis%20learning%20and%20the%20underlying%20mechanisms%20in%20the%20nematode%20Caenorhabditis%20elegans&rft.jtitle=PloS%20one&rft.au=Li,%20Yiping&rft.date=2013-08-12&rft.volume=8&rft.issue=8&rft.spage=e71180&rft.epage=e71180&rft.pages=e71180-e71180&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0071180&rft_dat=%3Cgale_plos_%3EA478310970%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430421050&rft_id=info:pmid/23951104&rft_galeid=A478310970&rft_doaj_id=oai_doaj_org_article_f980beb7f9b54c039177ba06cae3813c&rfr_iscdi=true