A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold
Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arisi...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-08, Vol.8 (8), p.e70923-e70923 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e70923 |
---|---|
container_issue | 8 |
container_start_page | e70923 |
container_title | PloS one |
container_volume | 8 |
creator | Rendón-Ramírez, Adela Shukla, Manish Oda, Masataka Chakraborty, Sandeep Minda, Renu Dandekar, Abhaya M Ásgeirsson, Bjarni Goñi, Félix M Rao, Basuthkar J |
description | Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues. |
doi_str_mv | 10.1371/journal.pone.0070923 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1430247327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478419388</galeid><doaj_id>oai_doaj_org_article_c199ce54219b43e5ae4726679223e233</doaj_id><sourcerecordid>A478419388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-7366d90211b889b8387b1eee8504ed8a860af6817b7439e092b8ec00d1942aac3</originalsourceid><addsrcrecordid>eNqNk9tu1DAURSMEoqXwBwgsISF4mMG3SZwXpKHiMlKlVtxeLcc5nnHlxKntFPpPfCQOMy0d1AeUSLbstfeJd3yK4inBc8Iq8ubcj6FXbj74HuYYV7im7F5xSGpGZyXF7P6t-UHxKMZzjBdMlOXD4oCymuOyrA6LX0ukfTeMSSXrsx3qfDs6QCpG6BoHLTLBd6i1xkCAPqEh-AQqAjKqs-4q88maiGybN62xENHZCp2dHG9175S2zo0R6azOg8ov2la7hMnLXTk0wJBsO3n-sGmTgQjB9vC3VNTKGO_ax8UDo1yEJ7vxqPj24f3X40-zk9OPq-PlyUyXNU2zipVlW2NKSCNE3QgmqoYAgFhgDq1QosTKlIJUTcVZDTm4RoDGuCU1p0ppdlQ83_oOzke5CzpKwhmmvGK0ysRqS7Rencsh2E6FK-mVlX8WfFhLFZLVDqQmda1hwSmpG85goYBXNGdfU8qAMpa93u6qjU0Hrc5BBuX2TPd3eruRa38pWcVYyXg2eLUzCP5ihJhkZ6MG51QPfpy-m-KSsEUtMvriH_Tu0-2otcoHsL3xua6eTOWSV4LneyUmr_kdVH5a6KzOt9LYvL4neL0nyEyCn2mtxhjl6svn_2dPv--zL2-xG1AubaJ343Sj4z7It6AOPsYA5iZkguXUVNdpyKmp5K6psuzZ7R90I7ruIvYbstIedw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430247327</pqid></control><display><type>article</type><title>A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rendón-Ramírez, Adela ; Shukla, Manish ; Oda, Masataka ; Chakraborty, Sandeep ; Minda, Renu ; Dandekar, Abhaya M ; Ásgeirsson, Bjarni ; Goñi, Félix M ; Rao, Basuthkar J</creator><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Rendón-Ramírez, Adela ; Shukla, Manish ; Oda, Masataka ; Chakraborty, Sandeep ; Minda, Renu ; Dandekar, Abhaya M ; Ásgeirsson, Bjarni ; Goñi, Félix M ; Rao, Basuthkar J ; Uversky, Vladimir N.</creatorcontrib><description>Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0070923</identifier><identifier>PMID: 23940667</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amides ; Amino Acid Motifs ; Aspartic proteases ; Bacillus cereus ; Bacillus cereus - enzymology ; Bacterial Proteins - chemistry ; Beta lactamases ; Biochemistry ; Biology ; Catalytic converters ; Catalytic Domain ; Chemistry ; Clostridium perfringens ; Computation ; Computer applications ; Computer Science ; Computer Simulation ; Data bases ; Edman degradation ; Electrostatic properties ; Enzymes ; Evolution ; Evolution (Biology) ; Fluorides ; Homology ; Identification methods ; Imipenem ; Lactams ; Mass spectrometry ; Mass spectroscopy ; Membrane vesicles ; Models, Molecular ; Modular units ; Nucleotide sequence ; Peptidase ; Peptides ; Phosphatases ; Phosphoinositide Phospholipase C - chemistry ; Phospholipase ; Phospholipase C ; Proline ; Protease ; Protease inhibitors ; Proteases ; Protein families ; Proteins ; Proteolysis ; Proteolytic enzymes ; Residues ; Serine ; Serine Endopeptidases - chemistry ; Serine proteinase ; Signal transduction ; Spatial discrimination ; Thrombin ; Vibrio ; Water-borne diseases ; Waterborne diseases</subject><ispartof>PloS one, 2013-08, Vol.8 (8), p.e70923-e70923</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Rendón-Ramirez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Rendón-Ramirez et al 2013 Rendón-Ramirez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-7366d90211b889b8387b1eee8504ed8a860af6817b7439e092b8ec00d1942aac3</citedby><cites>FETCH-LOGICAL-c692t-7366d90211b889b8387b1eee8504ed8a860af6817b7439e092b8ec00d1942aac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733634/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733634/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23940667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Rendón-Ramírez, Adela</creatorcontrib><creatorcontrib>Shukla, Manish</creatorcontrib><creatorcontrib>Oda, Masataka</creatorcontrib><creatorcontrib>Chakraborty, Sandeep</creatorcontrib><creatorcontrib>Minda, Renu</creatorcontrib><creatorcontrib>Dandekar, Abhaya M</creatorcontrib><creatorcontrib>Ásgeirsson, Bjarni</creatorcontrib><creatorcontrib>Goñi, Félix M</creatorcontrib><creatorcontrib>Rao, Basuthkar J</creatorcontrib><title>A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.</description><subject>Amides</subject><subject>Amino Acid Motifs</subject><subject>Aspartic proteases</subject><subject>Bacillus cereus</subject><subject>Bacillus cereus - enzymology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Beta lactamases</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Catalytic converters</subject><subject>Catalytic Domain</subject><subject>Chemistry</subject><subject>Clostridium perfringens</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Data bases</subject><subject>Edman degradation</subject><subject>Electrostatic properties</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution (Biology)</subject><subject>Fluorides</subject><subject>Homology</subject><subject>Identification methods</subject><subject>Imipenem</subject><subject>Lactams</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane vesicles</subject><subject>Models, Molecular</subject><subject>Modular units</subject><subject>Nucleotide sequence</subject><subject>Peptidase</subject><subject>Peptides</subject><subject>Phosphatases</subject><subject>Phosphoinositide Phospholipase C - chemistry</subject><subject>Phospholipase</subject><subject>Phospholipase C</subject><subject>Proline</subject><subject>Protease</subject><subject>Protease inhibitors</subject><subject>Proteases</subject><subject>Protein families</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteolytic enzymes</subject><subject>Residues</subject><subject>Serine</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine proteinase</subject><subject>Signal transduction</subject><subject>Spatial discrimination</subject><subject>Thrombin</subject><subject>Vibrio</subject><subject>Water-borne diseases</subject><subject>Waterborne diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAURSMEoqXwBwgsISF4mMG3SZwXpKHiMlKlVtxeLcc5nnHlxKntFPpPfCQOMy0d1AeUSLbstfeJd3yK4inBc8Iq8ubcj6FXbj74HuYYV7im7F5xSGpGZyXF7P6t-UHxKMZzjBdMlOXD4oCymuOyrA6LX0ukfTeMSSXrsx3qfDs6QCpG6BoHLTLBd6i1xkCAPqEh-AQqAjKqs-4q88maiGybN62xENHZCp2dHG9175S2zo0R6azOg8ov2la7hMnLXTk0wJBsO3n-sGmTgQjB9vC3VNTKGO_ax8UDo1yEJ7vxqPj24f3X40-zk9OPq-PlyUyXNU2zipVlW2NKSCNE3QgmqoYAgFhgDq1QosTKlIJUTcVZDTm4RoDGuCU1p0ppdlQ83_oOzke5CzpKwhmmvGK0ysRqS7Rencsh2E6FK-mVlX8WfFhLFZLVDqQmda1hwSmpG85goYBXNGdfU8qAMpa93u6qjU0Hrc5BBuX2TPd3eruRa38pWcVYyXg2eLUzCP5ihJhkZ6MG51QPfpy-m-KSsEUtMvriH_Tu0-2otcoHsL3xua6eTOWSV4LneyUmr_kdVH5a6KzOt9LYvL4neL0nyEyCn2mtxhjl6svn_2dPv--zL2-xG1AubaJ343Sj4z7It6AOPsYA5iZkguXUVNdpyKmp5K6psuzZ7R90I7ruIvYbstIedw</recordid><startdate>20130805</startdate><enddate>20130805</enddate><creator>Rendón-Ramírez, Adela</creator><creator>Shukla, Manish</creator><creator>Oda, Masataka</creator><creator>Chakraborty, Sandeep</creator><creator>Minda, Renu</creator><creator>Dandekar, Abhaya M</creator><creator>Ásgeirsson, Bjarni</creator><creator>Goñi, Félix M</creator><creator>Rao, Basuthkar J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130805</creationdate><title>A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold</title><author>Rendón-Ramírez, Adela ; Shukla, Manish ; Oda, Masataka ; Chakraborty, Sandeep ; Minda, Renu ; Dandekar, Abhaya M ; Ásgeirsson, Bjarni ; Goñi, Félix M ; Rao, Basuthkar J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-7366d90211b889b8387b1eee8504ed8a860af6817b7439e092b8ec00d1942aac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amides</topic><topic>Amino Acid Motifs</topic><topic>Aspartic proteases</topic><topic>Bacillus cereus</topic><topic>Bacillus cereus - enzymology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Beta lactamases</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Catalytic converters</topic><topic>Catalytic Domain</topic><topic>Chemistry</topic><topic>Clostridium perfringens</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Data bases</topic><topic>Edman degradation</topic><topic>Electrostatic properties</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution (Biology)</topic><topic>Fluorides</topic><topic>Homology</topic><topic>Identification methods</topic><topic>Imipenem</topic><topic>Lactams</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane vesicles</topic><topic>Models, Molecular</topic><topic>Modular units</topic><topic>Nucleotide sequence</topic><topic>Peptidase</topic><topic>Peptides</topic><topic>Phosphatases</topic><topic>Phosphoinositide Phospholipase C - chemistry</topic><topic>Phospholipase</topic><topic>Phospholipase C</topic><topic>Proline</topic><topic>Protease</topic><topic>Protease inhibitors</topic><topic>Proteases</topic><topic>Protein families</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteolytic enzymes</topic><topic>Residues</topic><topic>Serine</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine proteinase</topic><topic>Signal transduction</topic><topic>Spatial discrimination</topic><topic>Thrombin</topic><topic>Vibrio</topic><topic>Water-borne diseases</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rendón-Ramírez, Adela</creatorcontrib><creatorcontrib>Shukla, Manish</creatorcontrib><creatorcontrib>Oda, Masataka</creatorcontrib><creatorcontrib>Chakraborty, Sandeep</creatorcontrib><creatorcontrib>Minda, Renu</creatorcontrib><creatorcontrib>Dandekar, Abhaya M</creatorcontrib><creatorcontrib>Ásgeirsson, Bjarni</creatorcontrib><creatorcontrib>Goñi, Félix M</creatorcontrib><creatorcontrib>Rao, Basuthkar J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rendón-Ramírez, Adela</au><au>Shukla, Manish</au><au>Oda, Masataka</au><au>Chakraborty, Sandeep</au><au>Minda, Renu</au><au>Dandekar, Abhaya M</au><au>Ásgeirsson, Bjarni</au><au>Goñi, Félix M</au><au>Rao, Basuthkar J</au><au>Uversky, Vladimir N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-08-05</date><risdate>2013</risdate><volume>8</volume><issue>8</issue><spage>e70923</spage><epage>e70923</epage><pages>e70923-e70923</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23940667</pmid><doi>10.1371/journal.pone.0070923</doi><tpages>e70923</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-08, Vol.8 (8), p.e70923-e70923 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1430247327 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amides Amino Acid Motifs Aspartic proteases Bacillus cereus Bacillus cereus - enzymology Bacterial Proteins - chemistry Beta lactamases Biochemistry Biology Catalytic converters Catalytic Domain Chemistry Clostridium perfringens Computation Computer applications Computer Science Computer Simulation Data bases Edman degradation Electrostatic properties Enzymes Evolution Evolution (Biology) Fluorides Homology Identification methods Imipenem Lactams Mass spectrometry Mass spectroscopy Membrane vesicles Models, Molecular Modular units Nucleotide sequence Peptidase Peptides Phosphatases Phosphoinositide Phospholipase C - chemistry Phospholipase Phospholipase C Proline Protease Protease inhibitors Proteases Protein families Proteins Proteolysis Proteolytic enzymes Residues Serine Serine Endopeptidases - chemistry Serine proteinase Signal transduction Spatial discrimination Thrombin Vibrio Water-borne diseases Waterborne diseases |
title | A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20module%20assembled%20from%20different%20protease%20family%20motifs%20identifies%20PI%20PLC%20from%20Bacillus%20cereus%20as%20a%20putative%20prolyl%20peptidase%20with%20a%20serine%20protease%20scaffold&rft.jtitle=PloS%20one&rft.au=Rend%C3%B3n-Ram%C3%ADrez,%20Adela&rft.date=2013-08-05&rft.volume=8&rft.issue=8&rft.spage=e70923&rft.epage=e70923&rft.pages=e70923-e70923&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0070923&rft_dat=%3Cgale_plos_%3EA478419388%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430247327&rft_id=info:pmid/23940667&rft_galeid=A478419388&rft_doaj_id=oai_doaj_org_article_c199ce54219b43e5ae4726679223e233&rfr_iscdi=true |