Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin

Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprisin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-09, Vol.8 (9), p.e73231-e73231
Hauptverfasser: Rozwadowska, Natalia, Kolanowski, Tomasz, Wiland, Ewa, Siatkowski, Marcin, Pawlak, Piotr, Malcher, Agnieszka, Mietkiewski, Tomasz, Olszewska, Marta, Kurpisz, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e73231
container_issue 9
container_start_page e73231
container_title PloS one
container_volume 8
creator Rozwadowska, Natalia
Kolanowski, Tomasz
Wiland, Ewa
Siatkowski, Marcin
Pawlak, Piotr
Malcher, Agnieszka
Mietkiewski, Tomasz
Olszewska, Marta
Kurpisz, Maciej
description Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.
doi_str_mv 10.1371/journal.pone.0073231
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1429688276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478434752</galeid><doaj_id>oai_doaj_org_article_4ebfc4b1a1e240a2ba0e24a9b207559e</doaj_id><sourcerecordid>A478434752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqOrkRlsGPgYUFv25DmiZthjaZTdLFBX-86Ux3mMpeSC4STp7zJnlzTpa9hGAJcQk_bN3greiWO2fVEoASIwwfZeeQYbSgCODHJ-uz7FkIWwAKvKL0aXaGCICMQXSe_Vm3wgsZlTdBRONs7nRuB9kp4XPhZWuiknHwostFl6g9E_J68MY2ubH5rYne5bXRWnllozmKtEMvbB6i6nOpui6Msf7ONcoamTtvGmOfZ0-06IJ6Mc0X2c_Pn36svy6urr9s1pdXC0kZiotVXSOESUmk0CVVmJAaIEIoK4qVxlWZoqhQTNWokADSgjINKZUAE1xoJkt8kb0-6O46F_hkXOCQIEZXK1TSRGwORO3Elu-86YW_404Yvg8433Dho0m2cKIqLUkFBVTJRoEqAdJCsAqBsiiYSlofp9OGqle1TK4k-2ai8x1rWt64W45LChgYL_NuEvDuZlAh8t6E0UNhlRvGe2NIYUHwiL75B334dRPViPQAY7VL58pRlF-SckWStwVK1PIBKo1a9UamKtMmxWcJ72cJiYnqd2zEEALffP_2_-z1rzn79oRtVSq8Nrhu2JfeHCQHUHoXglf6aDIEfGySezf42CR8apKU9ur0g45J912B_wKR8w4W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429688276</pqid></control><display><type>article</type><title>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Rozwadowska, Natalia ; Kolanowski, Tomasz ; Wiland, Ewa ; Siatkowski, Marcin ; Pawlak, Piotr ; Malcher, Agnieszka ; Mietkiewski, Tomasz ; Olszewska, Marta ; Kurpisz, Maciej</creator><creatorcontrib>Rozwadowska, Natalia ; Kolanowski, Tomasz ; Wiland, Ewa ; Siatkowski, Marcin ; Pawlak, Piotr ; Malcher, Agnieszka ; Mietkiewski, Tomasz ; Olszewska, Marta ; Kurpisz, Maciej</creatorcontrib><description>Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0073231</identifier><identifier>PMID: 24019912</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Cell culture ; Cell Differentiation ; Cell Nucleus ; Centromere ; Centromeres ; Chromatin ; Chromatin remodeling ; Chromosomes ; Chromosomes, Human, Pair 11 ; Chromosomes, Human, Pair 7 ; Deoxyribonucleic acid ; Differentiation (biology) ; DNA ; DNA binding proteins ; DNA microarrays ; Epigenetic inheritance ; Epigenetics ; Gene expression ; Genes ; Genetic aspects ; Histones ; Humans ; In Situ Hybridization, Fluorescence ; In Vitro Techniques ; Muscle, Skeletal - cytology ; Myoblasts ; Myocytes ; Myogenesis ; Nuclei ; Nuclei (cytology) ; Oligonucleotide Array Sequence Analysis ; Rodents ; Silence ; Stem cells ; Stem Cells - cytology ; Transcription (Genetics) ; Transcription factors</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e73231-e73231</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Rozwadowska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Rozwadowska et al 2013 Rozwadowska et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</citedby><cites>FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760906/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760906/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24019912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozwadowska, Natalia</creatorcontrib><creatorcontrib>Kolanowski, Tomasz</creatorcontrib><creatorcontrib>Wiland, Ewa</creatorcontrib><creatorcontrib>Siatkowski, Marcin</creatorcontrib><creatorcontrib>Pawlak, Piotr</creatorcontrib><creatorcontrib>Malcher, Agnieszka</creatorcontrib><creatorcontrib>Mietkiewski, Tomasz</creatorcontrib><creatorcontrib>Olszewska, Marta</creatorcontrib><creatorcontrib>Kurpisz, Maciej</creatorcontrib><title>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.</description><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Nucleus</subject><subject>Centromere</subject><subject>Centromeres</subject><subject>Chromatin</subject><subject>Chromatin remodeling</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, Pair 11</subject><subject>Chromosomes, Human, Pair 7</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation (biology)</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA microarrays</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Histones</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>In Vitro Techniques</subject><subject>Muscle, Skeletal - cytology</subject><subject>Myoblasts</subject><subject>Myocytes</subject><subject>Myogenesis</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Rodents</subject><subject>Silence</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqOrkRlsGPgYUFv25DmiZthjaZTdLFBX-86Ux3mMpeSC4STp7zJnlzTpa9hGAJcQk_bN3greiWO2fVEoASIwwfZeeQYbSgCODHJ-uz7FkIWwAKvKL0aXaGCICMQXSe_Vm3wgsZlTdBRONs7nRuB9kp4XPhZWuiknHwostFl6g9E_J68MY2ubH5rYne5bXRWnllozmKtEMvbB6i6nOpui6Msf7ONcoamTtvGmOfZ0-06IJ6Mc0X2c_Pn36svy6urr9s1pdXC0kZiotVXSOESUmk0CVVmJAaIEIoK4qVxlWZoqhQTNWokADSgjINKZUAE1xoJkt8kb0-6O46F_hkXOCQIEZXK1TSRGwORO3Elu-86YW_404Yvg8433Dho0m2cKIqLUkFBVTJRoEqAdJCsAqBsiiYSlofp9OGqle1TK4k-2ai8x1rWt64W45LChgYL_NuEvDuZlAh8t6E0UNhlRvGe2NIYUHwiL75B334dRPViPQAY7VL58pRlF-SckWStwVK1PIBKo1a9UamKtMmxWcJ72cJiYnqd2zEEALffP_2_-z1rzn79oRtVSq8Nrhu2JfeHCQHUHoXglf6aDIEfGySezf42CR8apKU9ur0g45J912B_wKR8w4W</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Rozwadowska, Natalia</creator><creator>Kolanowski, Tomasz</creator><creator>Wiland, Ewa</creator><creator>Siatkowski, Marcin</creator><creator>Pawlak, Piotr</creator><creator>Malcher, Agnieszka</creator><creator>Mietkiewski, Tomasz</creator><creator>Olszewska, Marta</creator><creator>Kurpisz, Maciej</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130903</creationdate><title>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</title><author>Rozwadowska, Natalia ; Kolanowski, Tomasz ; Wiland, Ewa ; Siatkowski, Marcin ; Pawlak, Piotr ; Malcher, Agnieszka ; Mietkiewski, Tomasz ; Olszewska, Marta ; Kurpisz, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Nucleus</topic><topic>Centromere</topic><topic>Centromeres</topic><topic>Chromatin</topic><topic>Chromatin remodeling</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, Pair 11</topic><topic>Chromosomes, Human, Pair 7</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation (biology)</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA microarrays</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Histones</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>In Vitro Techniques</topic><topic>Muscle, Skeletal - cytology</topic><topic>Myoblasts</topic><topic>Myocytes</topic><topic>Myogenesis</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Rodents</topic><topic>Silence</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozwadowska, Natalia</creatorcontrib><creatorcontrib>Kolanowski, Tomasz</creatorcontrib><creatorcontrib>Wiland, Ewa</creatorcontrib><creatorcontrib>Siatkowski, Marcin</creatorcontrib><creatorcontrib>Pawlak, Piotr</creatorcontrib><creatorcontrib>Malcher, Agnieszka</creatorcontrib><creatorcontrib>Mietkiewski, Tomasz</creatorcontrib><creatorcontrib>Olszewska, Marta</creatorcontrib><creatorcontrib>Kurpisz, Maciej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozwadowska, Natalia</au><au>Kolanowski, Tomasz</au><au>Wiland, Ewa</au><au>Siatkowski, Marcin</au><au>Pawlak, Piotr</au><au>Malcher, Agnieszka</au><au>Mietkiewski, Tomasz</au><au>Olszewska, Marta</au><au>Kurpisz, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-03</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e73231</spage><epage>e73231</epage><pages>e73231-e73231</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24019912</pmid><doi>10.1371/journal.pone.0073231</doi><tpages>e73231</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-09, Vol.8 (9), p.e73231-e73231
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1429688276
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Cell culture
Cell Differentiation
Cell Nucleus
Centromere
Centromeres
Chromatin
Chromatin remodeling
Chromosomes
Chromosomes, Human, Pair 11
Chromosomes, Human, Pair 7
Deoxyribonucleic acid
Differentiation (biology)
DNA
DNA binding proteins
DNA microarrays
Epigenetic inheritance
Epigenetics
Gene expression
Genes
Genetic aspects
Histones
Humans
In Situ Hybridization, Fluorescence
In Vitro Techniques
Muscle, Skeletal - cytology
Myoblasts
Myocytes
Myogenesis
Nuclei
Nuclei (cytology)
Oligonucleotide Array Sequence Analysis
Rodents
Silence
Stem cells
Stem Cells - cytology
Transcription (Genetics)
Transcription factors
title Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20nuclear%20architectural%20alterations%20during%20in%20vitro%20differentiation%20of%20human%20stem%20cells%20of%20myogenic%20origin&rft.jtitle=PloS%20one&rft.au=Rozwadowska,%20Natalia&rft.date=2013-09-03&rft.volume=8&rft.issue=9&rft.spage=e73231&rft.epage=e73231&rft.pages=e73231-e73231&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0073231&rft_dat=%3Cgale_plos_%3EA478434752%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429688276&rft_id=info:pmid/24019912&rft_galeid=A478434752&rft_doaj_id=oai_doaj_org_article_4ebfc4b1a1e240a2ba0e24a9b207559e&rfr_iscdi=true