Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin
Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprisin...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-09, Vol.8 (9), p.e73231-e73231 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e73231 |
---|---|
container_issue | 9 |
container_start_page | e73231 |
container_title | PloS one |
container_volume | 8 |
creator | Rozwadowska, Natalia Kolanowski, Tomasz Wiland, Ewa Siatkowski, Marcin Pawlak, Piotr Malcher, Agnieszka Mietkiewski, Tomasz Olszewska, Marta Kurpisz, Maciej |
description | Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation. |
doi_str_mv | 10.1371/journal.pone.0073231 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1429688276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478434752</galeid><doaj_id>oai_doaj_org_article_4ebfc4b1a1e240a2ba0e24a9b207559e</doaj_id><sourcerecordid>A478434752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqOrkRlsGPgYUFv25DmiZthjaZTdLFBX-86Ux3mMpeSC4STp7zJnlzTpa9hGAJcQk_bN3greiWO2fVEoASIwwfZeeQYbSgCODHJ-uz7FkIWwAKvKL0aXaGCICMQXSe_Vm3wgsZlTdBRONs7nRuB9kp4XPhZWuiknHwostFl6g9E_J68MY2ubH5rYne5bXRWnllozmKtEMvbB6i6nOpui6Msf7ONcoamTtvGmOfZ0-06IJ6Mc0X2c_Pn36svy6urr9s1pdXC0kZiotVXSOESUmk0CVVmJAaIEIoK4qVxlWZoqhQTNWokADSgjINKZUAE1xoJkt8kb0-6O46F_hkXOCQIEZXK1TSRGwORO3Elu-86YW_404Yvg8433Dho0m2cKIqLUkFBVTJRoEqAdJCsAqBsiiYSlofp9OGqle1TK4k-2ai8x1rWt64W45LChgYL_NuEvDuZlAh8t6E0UNhlRvGe2NIYUHwiL75B334dRPViPQAY7VL58pRlF-SckWStwVK1PIBKo1a9UamKtMmxWcJ72cJiYnqd2zEEALffP_2_-z1rzn79oRtVSq8Nrhu2JfeHCQHUHoXglf6aDIEfGySezf42CR8apKU9ur0g45J912B_wKR8w4W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429688276</pqid></control><display><type>article</type><title>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Rozwadowska, Natalia ; Kolanowski, Tomasz ; Wiland, Ewa ; Siatkowski, Marcin ; Pawlak, Piotr ; Malcher, Agnieszka ; Mietkiewski, Tomasz ; Olszewska, Marta ; Kurpisz, Maciej</creator><creatorcontrib>Rozwadowska, Natalia ; Kolanowski, Tomasz ; Wiland, Ewa ; Siatkowski, Marcin ; Pawlak, Piotr ; Malcher, Agnieszka ; Mietkiewski, Tomasz ; Olszewska, Marta ; Kurpisz, Maciej</creatorcontrib><description>Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0073231</identifier><identifier>PMID: 24019912</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Cell culture ; Cell Differentiation ; Cell Nucleus ; Centromere ; Centromeres ; Chromatin ; Chromatin remodeling ; Chromosomes ; Chromosomes, Human, Pair 11 ; Chromosomes, Human, Pair 7 ; Deoxyribonucleic acid ; Differentiation (biology) ; DNA ; DNA binding proteins ; DNA microarrays ; Epigenetic inheritance ; Epigenetics ; Gene expression ; Genes ; Genetic aspects ; Histones ; Humans ; In Situ Hybridization, Fluorescence ; In Vitro Techniques ; Muscle, Skeletal - cytology ; Myoblasts ; Myocytes ; Myogenesis ; Nuclei ; Nuclei (cytology) ; Oligonucleotide Array Sequence Analysis ; Rodents ; Silence ; Stem cells ; Stem Cells - cytology ; Transcription (Genetics) ; Transcription factors</subject><ispartof>PloS one, 2013-09, Vol.8 (9), p.e73231-e73231</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Rozwadowska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Rozwadowska et al 2013 Rozwadowska et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</citedby><cites>FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760906/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760906/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24019912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozwadowska, Natalia</creatorcontrib><creatorcontrib>Kolanowski, Tomasz</creatorcontrib><creatorcontrib>Wiland, Ewa</creatorcontrib><creatorcontrib>Siatkowski, Marcin</creatorcontrib><creatorcontrib>Pawlak, Piotr</creatorcontrib><creatorcontrib>Malcher, Agnieszka</creatorcontrib><creatorcontrib>Mietkiewski, Tomasz</creatorcontrib><creatorcontrib>Olszewska, Marta</creatorcontrib><creatorcontrib>Kurpisz, Maciej</creatorcontrib><title>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.</description><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Nucleus</subject><subject>Centromere</subject><subject>Centromeres</subject><subject>Chromatin</subject><subject>Chromatin remodeling</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, Pair 11</subject><subject>Chromosomes, Human, Pair 7</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation (biology)</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA microarrays</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Histones</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>In Vitro Techniques</subject><subject>Muscle, Skeletal - cytology</subject><subject>Myoblasts</subject><subject>Myocytes</subject><subject>Myogenesis</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Rodents</subject><subject>Silence</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlqOrkRlsGPgYUFv25DmiZthjaZTdLFBX-86Ux3mMpeSC4STp7zJnlzTpa9hGAJcQk_bN3greiWO2fVEoASIwwfZeeQYbSgCODHJ-uz7FkIWwAKvKL0aXaGCICMQXSe_Vm3wgsZlTdBRONs7nRuB9kp4XPhZWuiknHwostFl6g9E_J68MY2ubH5rYne5bXRWnllozmKtEMvbB6i6nOpui6Msf7ONcoamTtvGmOfZ0-06IJ6Mc0X2c_Pn36svy6urr9s1pdXC0kZiotVXSOESUmk0CVVmJAaIEIoK4qVxlWZoqhQTNWokADSgjINKZUAE1xoJkt8kb0-6O46F_hkXOCQIEZXK1TSRGwORO3Elu-86YW_404Yvg8433Dho0m2cKIqLUkFBVTJRoEqAdJCsAqBsiiYSlofp9OGqle1TK4k-2ai8x1rWt64W45LChgYL_NuEvDuZlAh8t6E0UNhlRvGe2NIYUHwiL75B334dRPViPQAY7VL58pRlF-SckWStwVK1PIBKo1a9UamKtMmxWcJ72cJiYnqd2zEEALffP_2_-z1rzn79oRtVSq8Nrhu2JfeHCQHUHoXglf6aDIEfGySezf42CR8apKU9ur0g45J912B_wKR8w4W</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Rozwadowska, Natalia</creator><creator>Kolanowski, Tomasz</creator><creator>Wiland, Ewa</creator><creator>Siatkowski, Marcin</creator><creator>Pawlak, Piotr</creator><creator>Malcher, Agnieszka</creator><creator>Mietkiewski, Tomasz</creator><creator>Olszewska, Marta</creator><creator>Kurpisz, Maciej</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130903</creationdate><title>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</title><author>Rozwadowska, Natalia ; Kolanowski, Tomasz ; Wiland, Ewa ; Siatkowski, Marcin ; Pawlak, Piotr ; Malcher, Agnieszka ; Mietkiewski, Tomasz ; Olszewska, Marta ; Kurpisz, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8dd223474caf76e344d024469558f3b7af725e9ed25c016569f166c03435f9c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Nucleus</topic><topic>Centromere</topic><topic>Centromeres</topic><topic>Chromatin</topic><topic>Chromatin remodeling</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, Pair 11</topic><topic>Chromosomes, Human, Pair 7</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation (biology)</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA microarrays</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Histones</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>In Vitro Techniques</topic><topic>Muscle, Skeletal - cytology</topic><topic>Myoblasts</topic><topic>Myocytes</topic><topic>Myogenesis</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Rodents</topic><topic>Silence</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozwadowska, Natalia</creatorcontrib><creatorcontrib>Kolanowski, Tomasz</creatorcontrib><creatorcontrib>Wiland, Ewa</creatorcontrib><creatorcontrib>Siatkowski, Marcin</creatorcontrib><creatorcontrib>Pawlak, Piotr</creatorcontrib><creatorcontrib>Malcher, Agnieszka</creatorcontrib><creatorcontrib>Mietkiewski, Tomasz</creatorcontrib><creatorcontrib>Olszewska, Marta</creatorcontrib><creatorcontrib>Kurpisz, Maciej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozwadowska, Natalia</au><au>Kolanowski, Tomasz</au><au>Wiland, Ewa</au><au>Siatkowski, Marcin</au><au>Pawlak, Piotr</au><au>Malcher, Agnieszka</au><au>Mietkiewski, Tomasz</au><au>Olszewska, Marta</au><au>Kurpisz, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-09-03</date><risdate>2013</risdate><volume>8</volume><issue>9</issue><spage>e73231</spage><epage>e73231</epage><pages>e73231-e73231</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24019912</pmid><doi>10.1371/journal.pone.0073231</doi><tpages>e73231</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-09, Vol.8 (9), p.e73231-e73231 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1429688276 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Cell culture Cell Differentiation Cell Nucleus Centromere Centromeres Chromatin Chromatin remodeling Chromosomes Chromosomes, Human, Pair 11 Chromosomes, Human, Pair 7 Deoxyribonucleic acid Differentiation (biology) DNA DNA binding proteins DNA microarrays Epigenetic inheritance Epigenetics Gene expression Genes Genetic aspects Histones Humans In Situ Hybridization, Fluorescence In Vitro Techniques Muscle, Skeletal - cytology Myoblasts Myocytes Myogenesis Nuclei Nuclei (cytology) Oligonucleotide Array Sequence Analysis Rodents Silence Stem cells Stem Cells - cytology Transcription (Genetics) Transcription factors |
title | Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20nuclear%20architectural%20alterations%20during%20in%20vitro%20differentiation%20of%20human%20stem%20cells%20of%20myogenic%20origin&rft.jtitle=PloS%20one&rft.au=Rozwadowska,%20Natalia&rft.date=2013-09-03&rft.volume=8&rft.issue=9&rft.spage=e73231&rft.epage=e73231&rft.pages=e73231-e73231&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0073231&rft_dat=%3Cgale_plos_%3EA478434752%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429688276&rft_id=info:pmid/24019912&rft_galeid=A478434752&rft_doaj_id=oai_doaj_org_article_4ebfc4b1a1e240a2ba0e24a9b207559e&rfr_iscdi=true |