The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster

The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-08, Vol.8 (8), p.e72535
Hauptverfasser: Warelow, Thomas P, Oke, Muse, Schoepp-Cothenet, Barbara, Dahl, Jan U, Bruselat, Nicole, Sivalingam, Ganesh N, Leimkühler, Silke, Thalassinos, Konstantinos, Kappler, Ulrike, Naismith, James H, Santini, Joanne M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e72535
container_title PloS one
container_volume 8
creator Warelow, Thomas P
Oke, Muse
Schoepp-Cothenet, Barbara
Dahl, Jan U
Bruselat, Nicole
Sivalingam, Ganesh N
Leimkühler, Silke
Thalassinos, Konstantinos
Kappler, Ulrike
Naismith, James H
Santini, Joanne M
description The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.
doi_str_mv 10.1371/journal.pone.0072535
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1428934476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_080c252a643540bda2f9abc0330de010</doaj_id><sourcerecordid>3059398381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-325ebe92985b1f75ebafefbe951354b006d237b694a5cd7243947f52a1e389353</originalsourceid><addsrcrecordid>eNp1Uktv1DAQjhAVLYV_gCAS592On0k4IKGKR6VKvbRny7EnWy9pvIwdRP89Xjat2gMn2_O9RuOpqncM1kw07GwbZ5rsuN7FCdcADVdCvahOWCf4SnMQL5_cj6vXKW0BlGi1flUdcwlcaM5OKnd9izVh2gWyOdJ9bSnhFDLW8U_wNuGnOmWaXZ4Jazv5Ou_5cSz4sNcFP2Oq00wU58mHaXMgBEw_sXbjnDLSm-posGPCt8t5Wt18-3p9_mN1efX94vzL5coprvNKcIU9drxrVc-GpjzsgEOpKCaU7AG056LpdSetcr7hUnSyGRS3DEXbCSVOqw8H390Yk1nmkwyTvMBSNrowLg4MH-3W7CjcWbo30QbzrxBpYyzl4EY00ILjxVzLEg69t3zobO9ACPAIDIrX5yVt7u_QO5wy2fGZ6XNkCrdmE38b0ahWQFsMPi4GFH-VKeb_tCwPLEcxJcLhMYGB2S_Cg8rsF8Esi1Bk75929yh6-HnxFxaXsuk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428934476</pqid></control><display><type>article</type><title>The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster</title><source>MEDLINE</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Warelow, Thomas P ; Oke, Muse ; Schoepp-Cothenet, Barbara ; Dahl, Jan U ; Bruselat, Nicole ; Sivalingam, Ganesh N ; Leimkühler, Silke ; Thalassinos, Konstantinos ; Kappler, Ulrike ; Naismith, James H ; Santini, Joanne M</creator><contributor>Soares, Claudio M.</contributor><creatorcontrib>Warelow, Thomas P ; Oke, Muse ; Schoepp-Cothenet, Barbara ; Dahl, Jan U ; Bruselat, Nicole ; Sivalingam, Ganesh N ; Leimkühler, Silke ; Thalassinos, Konstantinos ; Kappler, Ulrike ; Naismith, James H ; Santini, Joanne M ; Soares, Claudio M.</creatorcontrib><description>The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0072535</identifier><identifier>PMID: 24023621</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerobiosis ; Alcaligenes ; Alcaligenes faecalis ; Alcaligenes faecalis - enzymology ; Alphaproteobacteria - enzymology ; Arsenates ; Arsenite ; Biochemistry ; Bioenergetics ; Biology ; Carbon ; Clusters ; Crystal structure ; Crystallography ; Cytochrome ; Cytochrome bc1 ; Detoxification ; Disulfides ; E coli ; Electrode potentials ; Electron paramagnetic resonance ; Electron Spin Resonance Spectroscopy ; Electron Transport Complex III - chemistry ; Electron Transport Complex III - metabolism ; Electrophoresis, Polyacrylamide Gel ; Enzymes ; Escherichia coli - metabolism ; Guanine ; Ligands ; Models, Molecular ; Molecular biology ; Molybdenum ; Molybdenum - metabolism ; Molybdopterin ; Mutagenesis ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; Mutation - genetics ; Oxidase ; Oxidation ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxidoreductases - isolation &amp; purification ; Oxidoreductases - metabolism ; Protein Multimerization ; Recombinant Proteins - isolation &amp; purification ; Recombinant Proteins - metabolism ; Redox potential ; Redox properties ; Rhodobacter sphaeroides ; Serine ; Site-directed mutagenesis ; Stability ; Structure-Activity Relationship ; Threonine</subject><ispartof>PloS one, 2013-08, Vol.8 (8), p.e72535</ispartof><rights>2013 Warelow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Warelow et al 2013 Warelow et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-325ebe92985b1f75ebafefbe951354b006d237b694a5cd7243947f52a1e389353</citedby><cites>FETCH-LOGICAL-c526t-325ebe92985b1f75ebafefbe951354b006d237b694a5cd7243947f52a1e389353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24023621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Soares, Claudio M.</contributor><creatorcontrib>Warelow, Thomas P</creatorcontrib><creatorcontrib>Oke, Muse</creatorcontrib><creatorcontrib>Schoepp-Cothenet, Barbara</creatorcontrib><creatorcontrib>Dahl, Jan U</creatorcontrib><creatorcontrib>Bruselat, Nicole</creatorcontrib><creatorcontrib>Sivalingam, Ganesh N</creatorcontrib><creatorcontrib>Leimkühler, Silke</creatorcontrib><creatorcontrib>Thalassinos, Konstantinos</creatorcontrib><creatorcontrib>Kappler, Ulrike</creatorcontrib><creatorcontrib>Naismith, James H</creatorcontrib><creatorcontrib>Santini, Joanne M</creatorcontrib><title>The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.</description><subject>Aerobiosis</subject><subject>Alcaligenes</subject><subject>Alcaligenes faecalis</subject><subject>Alcaligenes faecalis - enzymology</subject><subject>Alphaproteobacteria - enzymology</subject><subject>Arsenates</subject><subject>Arsenite</subject><subject>Biochemistry</subject><subject>Bioenergetics</subject><subject>Biology</subject><subject>Carbon</subject><subject>Clusters</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Cytochrome</subject><subject>Cytochrome bc1</subject><subject>Detoxification</subject><subject>Disulfides</subject><subject>E coli</subject><subject>Electrode potentials</subject><subject>Electron paramagnetic resonance</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Electron Transport Complex III - chemistry</subject><subject>Electron Transport Complex III - metabolism</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Enzymes</subject><subject>Escherichia coli - metabolism</subject><subject>Guanine</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molybdenum</subject><subject>Molybdenum - metabolism</subject><subject>Molybdopterin</subject><subject>Mutagenesis</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation - genetics</subject><subject>Oxidase</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - isolation &amp; purification</subject><subject>Oxidoreductases - metabolism</subject><subject>Protein Multimerization</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Redox potential</subject><subject>Redox properties</subject><subject>Rhodobacter sphaeroides</subject><subject>Serine</subject><subject>Site-directed mutagenesis</subject><subject>Stability</subject><subject>Structure-Activity Relationship</subject><subject>Threonine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uktv1DAQjhAVLYV_gCAS592On0k4IKGKR6VKvbRny7EnWy9pvIwdRP89Xjat2gMn2_O9RuOpqncM1kw07GwbZ5rsuN7FCdcADVdCvahOWCf4SnMQL5_cj6vXKW0BlGi1flUdcwlcaM5OKnd9izVh2gWyOdJ9bSnhFDLW8U_wNuGnOmWaXZ4Jazv5Ou_5cSz4sNcFP2Oq00wU58mHaXMgBEw_sXbjnDLSm-posGPCt8t5Wt18-3p9_mN1efX94vzL5coprvNKcIU9drxrVc-GpjzsgEOpKCaU7AG056LpdSetcr7hUnSyGRS3DEXbCSVOqw8H390Yk1nmkwyTvMBSNrowLg4MH-3W7CjcWbo30QbzrxBpYyzl4EY00ILjxVzLEg69t3zobO9ACPAIDIrX5yVt7u_QO5wy2fGZ6XNkCrdmE38b0ahWQFsMPi4GFH-VKeb_tCwPLEcxJcLhMYGB2S_Cg8rsF8Esi1Bk75929yh6-HnxFxaXsuk</recordid><startdate>20130830</startdate><enddate>20130830</enddate><creator>Warelow, Thomas P</creator><creator>Oke, Muse</creator><creator>Schoepp-Cothenet, Barbara</creator><creator>Dahl, Jan U</creator><creator>Bruselat, Nicole</creator><creator>Sivalingam, Ganesh N</creator><creator>Leimkühler, Silke</creator><creator>Thalassinos, Konstantinos</creator><creator>Kappler, Ulrike</creator><creator>Naismith, James H</creator><creator>Santini, Joanne M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130830</creationdate><title>The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster</title><author>Warelow, Thomas P ; Oke, Muse ; Schoepp-Cothenet, Barbara ; Dahl, Jan U ; Bruselat, Nicole ; Sivalingam, Ganesh N ; Leimkühler, Silke ; Thalassinos, Konstantinos ; Kappler, Ulrike ; Naismith, James H ; Santini, Joanne M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-325ebe92985b1f75ebafefbe951354b006d237b694a5cd7243947f52a1e389353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerobiosis</topic><topic>Alcaligenes</topic><topic>Alcaligenes faecalis</topic><topic>Alcaligenes faecalis - enzymology</topic><topic>Alphaproteobacteria - enzymology</topic><topic>Arsenates</topic><topic>Arsenite</topic><topic>Biochemistry</topic><topic>Bioenergetics</topic><topic>Biology</topic><topic>Carbon</topic><topic>Clusters</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Cytochrome</topic><topic>Cytochrome bc1</topic><topic>Detoxification</topic><topic>Disulfides</topic><topic>E coli</topic><topic>Electrode potentials</topic><topic>Electron paramagnetic resonance</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Electron Transport Complex III - chemistry</topic><topic>Electron Transport Complex III - metabolism</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Enzymes</topic><topic>Escherichia coli - metabolism</topic><topic>Guanine</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molybdenum</topic><topic>Molybdenum - metabolism</topic><topic>Molybdopterin</topic><topic>Mutagenesis</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation - genetics</topic><topic>Oxidase</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - isolation &amp; purification</topic><topic>Oxidoreductases - metabolism</topic><topic>Protein Multimerization</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Redox potential</topic><topic>Redox properties</topic><topic>Rhodobacter sphaeroides</topic><topic>Serine</topic><topic>Site-directed mutagenesis</topic><topic>Stability</topic><topic>Structure-Activity Relationship</topic><topic>Threonine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warelow, Thomas P</creatorcontrib><creatorcontrib>Oke, Muse</creatorcontrib><creatorcontrib>Schoepp-Cothenet, Barbara</creatorcontrib><creatorcontrib>Dahl, Jan U</creatorcontrib><creatorcontrib>Bruselat, Nicole</creatorcontrib><creatorcontrib>Sivalingam, Ganesh N</creatorcontrib><creatorcontrib>Leimkühler, Silke</creatorcontrib><creatorcontrib>Thalassinos, Konstantinos</creatorcontrib><creatorcontrib>Kappler, Ulrike</creatorcontrib><creatorcontrib>Naismith, James H</creatorcontrib><creatorcontrib>Santini, Joanne M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warelow, Thomas P</au><au>Oke, Muse</au><au>Schoepp-Cothenet, Barbara</au><au>Dahl, Jan U</au><au>Bruselat, Nicole</au><au>Sivalingam, Ganesh N</au><au>Leimkühler, Silke</au><au>Thalassinos, Konstantinos</au><au>Kappler, Ulrike</au><au>Naismith, James H</au><au>Santini, Joanne M</au><au>Soares, Claudio M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-08-30</date><risdate>2013</risdate><volume>8</volume><issue>8</issue><spage>e72535</spage><pages>e72535-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24023621</pmid><doi>10.1371/journal.pone.0072535</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-08, Vol.8 (8), p.e72535
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1428934476
source MEDLINE; Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aerobiosis
Alcaligenes
Alcaligenes faecalis
Alcaligenes faecalis - enzymology
Alphaproteobacteria - enzymology
Arsenates
Arsenite
Biochemistry
Bioenergetics
Biology
Carbon
Clusters
Crystal structure
Crystallography
Cytochrome
Cytochrome bc1
Detoxification
Disulfides
E coli
Electrode potentials
Electron paramagnetic resonance
Electron Spin Resonance Spectroscopy
Electron Transport Complex III - chemistry
Electron Transport Complex III - metabolism
Electrophoresis, Polyacrylamide Gel
Enzymes
Escherichia coli - metabolism
Guanine
Ligands
Models, Molecular
Molecular biology
Molybdenum
Molybdenum - metabolism
Molybdopterin
Mutagenesis
Mutant Proteins - chemistry
Mutant Proteins - metabolism
Mutation - genetics
Oxidase
Oxidation
Oxidation-Reduction
Oxidoreductases - chemistry
Oxidoreductases - isolation & purification
Oxidoreductases - metabolism
Protein Multimerization
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Redox potential
Redox properties
Rhodobacter sphaeroides
Serine
Site-directed mutagenesis
Stability
Structure-Activity Relationship
Threonine
title The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20respiratory%20arsenite%20oxidase:%20structure%20and%20the%20role%20of%20residues%20surrounding%20the%20rieske%20cluster&rft.jtitle=PloS%20one&rft.au=Warelow,%20Thomas%20P&rft.date=2013-08-30&rft.volume=8&rft.issue=8&rft.spage=e72535&rft.pages=e72535-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0072535&rft_dat=%3Cproquest_plos_%3E3059398381%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428934476&rft_id=info:pmid/24023621&rft_doaj_id=oai_doaj_org_article_080c252a643540bda2f9abc0330de010&rfr_iscdi=true