Improved inference of taxonomic richness from environmental DNA
Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-08, Vol.8 (8), p.e71974 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e71974 |
container_title | PloS one |
container_volume | 8 |
creator | Morgan, Matthew J Chariton, Anthony A Hartley, Diana M Court, Leon N Hardy, Christopher M |
description | Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of similar sequences across independent samples, as well as the frequency and diversity of sequences within individual samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program (APDP) that is able to process raw sequence datasets into a set of validated sequences in formats compatible with commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the underlying sample. |
doi_str_mv | 10.1371/journal.pone.0071974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1428060338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cba3cbc16c7b48099e4d13a25fcb044c</doaj_id><sourcerecordid>3055521071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-c8d3682b1fca104e2a9f5da0e0ed4dd52dbcf347edf542aa600170acab6b7a573</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EoqXwDxBE4rzL-CN2cgFV5WulCi5wtib2uM0qsRc7uyr_npRNq_bAySPP-z4zo5ex1xzWXBr-fpv2OeKw3qVIawDDW6OesFPeSrHSAuTTB_UJe1HKFqCWjdbP2YmQbcuBy1P2cTPucjqQr_oYKFN0VKVQTXiTYhp7V-XeXUcqpQo5jRXFQ59THClOOFSfvp-_ZM8CDoVeLe8Z-_Xl88-Lb6vLH183F-eXK1cLPa1c46VuRMeDQw6KBLah9ggE5JX3tfCdC1IZ8qFWAlEDcAPosNOdwdrIM_b2yN0Nqdjl9mK5Eg1okLKZFZujwifc2l3uR8x_bMLe_vtI-cpinno3kHUdStc5rp3pVANtS8pziaIOrgOl3Mz6sEzbdyN5N5-bcXgEfdyJ_bW9SgcrTS0lVzPg3QLI6feeyvSfldVR5XIqJVO4n8DB3oZ857K3Idsl5Nn25uF296a7VOVfo8CnGQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428060338</pqid></control><display><type>article</type><title>Improved inference of taxonomic richness from environmental DNA</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Morgan, Matthew J ; Chariton, Anthony A ; Hartley, Diana M ; Court, Leon N ; Hardy, Christopher M</creator><contributor>Quince, Christopher</contributor><creatorcontrib>Morgan, Matthew J ; Chariton, Anthony A ; Hartley, Diana M ; Court, Leon N ; Hardy, Christopher M ; Quince, Christopher</creatorcontrib><description>Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of similar sequences across independent samples, as well as the frequency and diversity of sequences within individual samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program (APDP) that is able to process raw sequence datasets into a set of validated sequences in formats compatible with commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the underlying sample.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0071974</identifier><identifier>PMID: 23991013</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Animals ; Base Sequence ; Biodiversity ; Bioinformatics ; Biological effects ; Biology ; Biosphere ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA Barcoding, Taxonomic - methods ; Ecosystem ; Ecosystems ; Environmental DNA ; Environmental Monitoring - methods ; Genetic testing ; Genomes ; Humans ; Independent sample ; Molecular Sequence Data ; Noise reduction ; Nucleotide sequence ; Polymerase Chain Reaction - methods ; Reproducibility of Results ; RNA, Ribosomal, 18S - genetics ; Sequence Analysis, DNA - methods ; Titanium</subject><ispartof>PloS one, 2013-08, Vol.8 (8), p.e71974</ispartof><rights>2013 Morgan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Morgan et al 2013 Morgan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-c8d3682b1fca104e2a9f5da0e0ed4dd52dbcf347edf542aa600170acab6b7a573</citedby><cites>FETCH-LOGICAL-c526t-c8d3682b1fca104e2a9f5da0e0ed4dd52dbcf347edf542aa600170acab6b7a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753314/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753314/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23991013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Quince, Christopher</contributor><creatorcontrib>Morgan, Matthew J</creatorcontrib><creatorcontrib>Chariton, Anthony A</creatorcontrib><creatorcontrib>Hartley, Diana M</creatorcontrib><creatorcontrib>Court, Leon N</creatorcontrib><creatorcontrib>Hardy, Christopher M</creatorcontrib><title>Improved inference of taxonomic richness from environmental DNA</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of similar sequences across independent samples, as well as the frequency and diversity of sequences within individual samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program (APDP) that is able to process raw sequence datasets into a set of validated sequences in formats compatible with commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the underlying sample.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biodiversity</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Biosphere</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA Barcoding, Taxonomic - methods</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental DNA</subject><subject>Environmental Monitoring - methods</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>Humans</subject><subject>Independent sample</subject><subject>Molecular Sequence Data</subject><subject>Noise reduction</subject><subject>Nucleotide sequence</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Reproducibility of Results</subject><subject>RNA, Ribosomal, 18S - genetics</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Titanium</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1v1DAQhi0EoqXwDxBE4rzL-CN2cgFV5WulCi5wtib2uM0qsRc7uyr_npRNq_bAySPP-z4zo5ex1xzWXBr-fpv2OeKw3qVIawDDW6OesFPeSrHSAuTTB_UJe1HKFqCWjdbP2YmQbcuBy1P2cTPucjqQr_oYKFN0VKVQTXiTYhp7V-XeXUcqpQo5jRXFQ59THClOOFSfvp-_ZM8CDoVeLe8Z-_Xl88-Lb6vLH183F-eXK1cLPa1c46VuRMeDQw6KBLah9ggE5JX3tfCdC1IZ8qFWAlEDcAPosNOdwdrIM_b2yN0Nqdjl9mK5Eg1okLKZFZujwifc2l3uR8x_bMLe_vtI-cpinno3kHUdStc5rp3pVANtS8pziaIOrgOl3Mz6sEzbdyN5N5-bcXgEfdyJ_bW9SgcrTS0lVzPg3QLI6feeyvSfldVR5XIqJVO4n8DB3oZ857K3Idsl5Nn25uF296a7VOVfo8CnGQ</recordid><startdate>20130826</startdate><enddate>20130826</enddate><creator>Morgan, Matthew J</creator><creator>Chariton, Anthony A</creator><creator>Hartley, Diana M</creator><creator>Court, Leon N</creator><creator>Hardy, Christopher M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130826</creationdate><title>Improved inference of taxonomic richness from environmental DNA</title><author>Morgan, Matthew J ; Chariton, Anthony A ; Hartley, Diana M ; Court, Leon N ; Hardy, Christopher M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-c8d3682b1fca104e2a9f5da0e0ed4dd52dbcf347edf542aa600170acab6b7a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biodiversity</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Biosphere</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA Barcoding, Taxonomic - methods</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental DNA</topic><topic>Environmental Monitoring - methods</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>Humans</topic><topic>Independent sample</topic><topic>Molecular Sequence Data</topic><topic>Noise reduction</topic><topic>Nucleotide sequence</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Reproducibility of Results</topic><topic>RNA, Ribosomal, 18S - genetics</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morgan, Matthew J</creatorcontrib><creatorcontrib>Chariton, Anthony A</creatorcontrib><creatorcontrib>Hartley, Diana M</creatorcontrib><creatorcontrib>Court, Leon N</creatorcontrib><creatorcontrib>Hardy, Christopher M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morgan, Matthew J</au><au>Chariton, Anthony A</au><au>Hartley, Diana M</au><au>Court, Leon N</au><au>Hardy, Christopher M</au><au>Quince, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved inference of taxonomic richness from environmental DNA</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-08-26</date><risdate>2013</risdate><volume>8</volume><issue>8</issue><spage>e71974</spage><pages>e71974-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of similar sequences across independent samples, as well as the frequency and diversity of sequences within individual samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program (APDP) that is able to process raw sequence datasets into a set of validated sequences in formats compatible with commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the underlying sample.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23991013</pmid><doi>10.1371/journal.pone.0071974</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-08, Vol.8 (8), p.e71974 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1428060338 |
source | PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Animals Base Sequence Biodiversity Bioinformatics Biological effects Biology Biosphere Datasets Deoxyribonucleic acid DNA DNA - chemistry DNA - genetics DNA Barcoding, Taxonomic - methods Ecosystem Ecosystems Environmental DNA Environmental Monitoring - methods Genetic testing Genomes Humans Independent sample Molecular Sequence Data Noise reduction Nucleotide sequence Polymerase Chain Reaction - methods Reproducibility of Results RNA, Ribosomal, 18S - genetics Sequence Analysis, DNA - methods Titanium |
title | Improved inference of taxonomic richness from environmental DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20inference%20of%20taxonomic%20richness%20from%20environmental%20DNA&rft.jtitle=PloS%20one&rft.au=Morgan,%20Matthew%20J&rft.date=2013-08-26&rft.volume=8&rft.issue=8&rft.spage=e71974&rft.pages=e71974-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0071974&rft_dat=%3Cproquest_plos_%3E3055521071%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428060338&rft_id=info:pmid/23991013&rft_doaj_id=oai_doaj_org_article_cba3cbc16c7b48099e4d13a25fcb044c&rfr_iscdi=true |