Resolution doubling in 3D-STORM imaging through improved buffers
Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploi...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-07, Vol.8 (7), p.e69004-e69004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e69004 |
---|---|
container_issue | 7 |
container_start_page | e69004 |
container_title | PloS one |
container_volume | 8 |
creator | Olivier, Nicolas Keller, Debora Gönczy, Pierre Manley, Suliana |
description | Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution. |
doi_str_mv | 10.1371/journal.pone.0069004 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1427370373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478239626</galeid><doaj_id>oai_doaj_org_article_fe5d91156c75465da4e2b645e4eb9b08</doaj_id><sourcerecordid>A478239626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-82ff87140333f49a839dccbba08359a93673d3c72534af8dbe0b68e1bec78acc3</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhiMEYpfCP0BQCQnBocXOOLZzQayWr0qLKnUXrpbt2KmrNC52soJ_j0vTVYP2gHJwPH7mnRn7zbLnGM0xMPxu4_vQyma-862ZI0RLhMiD7ByXkM9ojuDhyf9Z9iTGDUIFcEofZ2c5cEY44efZh5WJvuk759tp5XvVuLaeunYKH2fXN8vVt6nbynof69bB9_U67XfB35pqqnprTYhPs0dWNtE8G9ZJ9v3zp5vLr7Or5ZfF5cXVTNMy72Y8t5YzTBAAWFJKDmWltVIScShKWQJlUIFmeQFEWl4pgxTlBiujGZdawyR7edDdNT6KYfgoMMkZMAQMErE4EJWXG7ELqfPwW3jpxN-AD7WQoXO6McKaoioxLqhmBaFFJYnJFSWFIUaVKrU0yd4P1Xq1NZU2bRdkMxIdn7RuLWp_K9LLkBzKJPBmEAj-Z29iJ7YuatM0sjW-3_eNMQXAHCX01T_o_dMNVC3TAK61PtXVe1FxQRhPNWlOEzW_h0pfZbZOJ6dYl-KjhLejhMR05ldXyz5Gsbhe_T-7_DFmX5-wayObbn00WhyD5ADq4GMMxt5dMkZib_TjbYi90cVg9JT24vSB7pKOzoY_6oD3Ew</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427370373</pqid></control><display><type>article</type><title>Resolution doubling in 3D-STORM imaging through improved buffers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Olivier, Nicolas ; Keller, Debora ; Gönczy, Pierre ; Manley, Suliana</creator><creatorcontrib>Olivier, Nicolas ; Keller, Debora ; Gönczy, Pierre ; Manley, Suliana</creatorcontrib><description>Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0069004</identifier><identifier>PMID: 23874848</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biological properties ; Biological samples ; Biology ; Biophysics ; Buffers ; Cercopithecus aethiops ; Chemistry ; COS Cells ; Cycles ; Dyes ; Emitters ; Experiments ; Fluorescence ; Fluorescence microscopy ; Hydrogen-Ion Concentration ; Image resolution ; Laboratories ; Life sciences ; Localization ; Medical research ; Microscopy ; Microscopy, Fluorescence - methods ; Photons ; Physics ; Proteins ; Proteins - metabolism ; Stochasticity ; Storms</subject><ispartof>PloS one, 2013-07, Vol.8 (7), p.e69004-e69004</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Olivier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Olivier et al 2013 Olivier et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-82ff87140333f49a839dccbba08359a93673d3c72534af8dbe0b68e1bec78acc3</citedby><cites>FETCH-LOGICAL-c692t-82ff87140333f49a839dccbba08359a93673d3c72534af8dbe0b68e1bec78acc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714239/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714239/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23874848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olivier, Nicolas</creatorcontrib><creatorcontrib>Keller, Debora</creatorcontrib><creatorcontrib>Gönczy, Pierre</creatorcontrib><creatorcontrib>Manley, Suliana</creatorcontrib><title>Resolution doubling in 3D-STORM imaging through improved buffers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.</description><subject>Animals</subject><subject>Biological properties</subject><subject>Biological samples</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Buffers</subject><subject>Cercopithecus aethiops</subject><subject>Chemistry</subject><subject>COS Cells</subject><subject>Cycles</subject><subject>Dyes</subject><subject>Emitters</subject><subject>Experiments</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Hydrogen-Ion Concentration</subject><subject>Image resolution</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Localization</subject><subject>Medical research</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Photons</subject><subject>Physics</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Stochasticity</subject><subject>Storms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2P0zAQhiMEYpfCP0BQCQnBocXOOLZzQayWr0qLKnUXrpbt2KmrNC52soJ_j0vTVYP2gHJwPH7mnRn7zbLnGM0xMPxu4_vQyma-862ZI0RLhMiD7ByXkM9ojuDhyf9Z9iTGDUIFcEofZ2c5cEY44efZh5WJvuk759tp5XvVuLaeunYKH2fXN8vVt6nbynof69bB9_U67XfB35pqqnprTYhPs0dWNtE8G9ZJ9v3zp5vLr7Or5ZfF5cXVTNMy72Y8t5YzTBAAWFJKDmWltVIScShKWQJlUIFmeQFEWl4pgxTlBiujGZdawyR7edDdNT6KYfgoMMkZMAQMErE4EJWXG7ELqfPwW3jpxN-AD7WQoXO6McKaoioxLqhmBaFFJYnJFSWFIUaVKrU0yd4P1Xq1NZU2bRdkMxIdn7RuLWp_K9LLkBzKJPBmEAj-Z29iJ7YuatM0sjW-3_eNMQXAHCX01T_o_dMNVC3TAK61PtXVe1FxQRhPNWlOEzW_h0pfZbZOJ6dYl-KjhLejhMR05ldXyz5Gsbhe_T-7_DFmX5-wayObbn00WhyD5ADq4GMMxt5dMkZib_TjbYi90cVg9JT24vSB7pKOzoY_6oD3Ew</recordid><startdate>20130717</startdate><enddate>20130717</enddate><creator>Olivier, Nicolas</creator><creator>Keller, Debora</creator><creator>Gönczy, Pierre</creator><creator>Manley, Suliana</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130717</creationdate><title>Resolution doubling in 3D-STORM imaging through improved buffers</title><author>Olivier, Nicolas ; Keller, Debora ; Gönczy, Pierre ; Manley, Suliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-82ff87140333f49a839dccbba08359a93673d3c72534af8dbe0b68e1bec78acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biological properties</topic><topic>Biological samples</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Buffers</topic><topic>Cercopithecus aethiops</topic><topic>Chemistry</topic><topic>COS Cells</topic><topic>Cycles</topic><topic>Dyes</topic><topic>Emitters</topic><topic>Experiments</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Hydrogen-Ion Concentration</topic><topic>Image resolution</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Localization</topic><topic>Medical research</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Photons</topic><topic>Physics</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Stochasticity</topic><topic>Storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivier, Nicolas</creatorcontrib><creatorcontrib>Keller, Debora</creatorcontrib><creatorcontrib>Gönczy, Pierre</creatorcontrib><creatorcontrib>Manley, Suliana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivier, Nicolas</au><au>Keller, Debora</au><au>Gönczy, Pierre</au><au>Manley, Suliana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolution doubling in 3D-STORM imaging through improved buffers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-07-17</date><risdate>2013</risdate><volume>8</volume><issue>7</issue><spage>e69004</spage><epage>e69004</epage><pages>e69004-e69004</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23874848</pmid><doi>10.1371/journal.pone.0069004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-07, Vol.8 (7), p.e69004-e69004 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1427370373 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Biological properties Biological samples Biology Biophysics Buffers Cercopithecus aethiops Chemistry COS Cells Cycles Dyes Emitters Experiments Fluorescence Fluorescence microscopy Hydrogen-Ion Concentration Image resolution Laboratories Life sciences Localization Medical research Microscopy Microscopy, Fluorescence - methods Photons Physics Proteins Proteins - metabolism Stochasticity Storms |
title | Resolution doubling in 3D-STORM imaging through improved buffers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolution%20doubling%20in%203D-STORM%20imaging%20through%20improved%20buffers&rft.jtitle=PloS%20one&rft.au=Olivier,%20Nicolas&rft.date=2013-07-17&rft.volume=8&rft.issue=7&rft.spage=e69004&rft.epage=e69004&rft.pages=e69004-e69004&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0069004&rft_dat=%3Cgale_plos_%3EA478239626%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427370373&rft_id=info:pmid/23874848&rft_galeid=A478239626&rft_doaj_id=oai_doaj_org_article_fe5d91156c75465da4e2b645e4eb9b08&rfr_iscdi=true |