Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth
Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the mole...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-07, Vol.8 (7), p.e69240-e69240 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e69240 |
---|---|
container_issue | 7 |
container_start_page | e69240 |
container_title | PloS one |
container_volume | 8 |
creator | Fu, Lingyi Chen, Wangbing Guo, Wei Wang, Jingshu Tian, Yun Shi, Dingbo Zhang, Xiaohong Qiu, Huijuan Xiao, Xiangsheng Kang, Tiebang Huang, Wenlin Wang, Shusen Deng, Wuguo |
description | Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy. |
doi_str_mv | 10.1371/journal.pone.0069240 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1427353709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3d0611a70e9b441d9b084b2795432b11</doaj_id><sourcerecordid>3052791191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-467128428cf59b20d1d7dd591a5aa02cbb73d64ca84730031a760e0a604913613</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfILDEhkUz8St2vEFqo3lJFUV0QOwsx_FkMsrYwU5A3fFLbPmIfhOZTlq1iI2vdX3uuedenyh6jeAEEY6Sreu9Vc2kddZMIGQCU_gkOkaC4JhhSJ4-uB9FL0LYQpiSjLHn0REeohiO4-jXufGF8bU1YKV8ZboAzj7FONmspp9Xp-DjLL75c57kl99ifAoWy1mMbn4nX6fzGVC2BPl15_TGu52JdZKr0KpgwFVdDbpqW4HOgau-bb0JASz6nbIgV1YbD3LTNGDu3c9u8zJ6tlZNMK_GeBJ9mU1X-SK-uJwv87OLWKeYdTFlHOGM4kyvU1FgWKKSl2UqkEqVglgXBSclo1pllBMICVKcQQMVg1QgwhA5id4eeNvGBTkuL0hEMScp4VAMiOUBUTq1la2vd8pfS6dqeZtwvpLKd7VujCQlZGhoAY0oKEWlKGBGC8xFSgku0L7bh7FbX-xMqY3tvGoekT5-sfVGVu6HHH4WZbdy348E3n3vTejkrg56WJuyxvV73QgxggTnA_TdP9D_T0cPKO1dCN6s78UgKPeGuquSe0PJ0VBD2ZuHg9wX3TmI_AWiMsXl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427353709</pqid></control><display><type>article</type><title>Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fu, Lingyi ; Chen, Wangbing ; Guo, Wei ; Wang, Jingshu ; Tian, Yun ; Shi, Dingbo ; Zhang, Xiaohong ; Qiu, Huijuan ; Xiao, Xiangsheng ; Kang, Tiebang ; Huang, Wenlin ; Wang, Shusen ; Deng, Wuguo</creator><contributor>Xiao, Gutian</contributor><creatorcontrib>Fu, Lingyi ; Chen, Wangbing ; Guo, Wei ; Wang, Jingshu ; Tian, Yun ; Shi, Dingbo ; Zhang, Xiaohong ; Qiu, Huijuan ; Xiao, Xiangsheng ; Kang, Tiebang ; Huang, Wenlin ; Wang, Shusen ; Deng, Wuguo ; Xiao, Gutian</creatorcontrib><description>Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0069240</identifier><identifier>PMID: 23869238</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Angiogenesis ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Apoptosis - drug effects ; BAX protein ; Bcl-2 protein ; Berberine ; Berberine - pharmacology ; Berberine - therapeutic use ; Binding ; Cancer ; Cancer therapies ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Caspase ; Caspases - metabolism ; Cell growth ; Cell Line, Tumor ; Cell migration ; Cell morphology ; Cell Movement - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Colorectal cancer ; Cyclooxygenase 2 - metabolism ; Cyclooxygenase-2 ; Cytochrome ; Cytochrome c ; Cytochromes c - metabolism ; Cytology ; Cytosol ; Humans ; Hydrastis canadensis ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Inhibition ; Kinases ; Laboratories ; Lung cancer ; Lung diseases ; Lung Neoplasms - drug therapy ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Lungs ; Medical prognosis ; Medical treatment ; Mitochondria ; Molecular modelling ; NF-kappa B - metabolism ; NF-κB protein ; Non-small cell lung carcinoma ; Nuclear transport ; Oncology ; Phosphorylation ; Phytochemicals ; Poly(ADP-ribose) polymerase ; Prostate cancer ; Proteins ; Raf protein ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; Stem cells ; Telomerase ; Telomerase - metabolism ; Transcription Factor AP-2 - metabolism ; Translocation ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>PloS one, 2013-07, Vol.8 (7), p.e69240-e69240</ispartof><rights>2013 Fu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Fu et al 2013 Fu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-467128428cf59b20d1d7dd591a5aa02cbb73d64ca84730031a760e0a604913613</citedby><cites>FETCH-LOGICAL-c526t-467128428cf59b20d1d7dd591a5aa02cbb73d64ca84730031a760e0a604913613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711861/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23869238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Xiao, Gutian</contributor><creatorcontrib>Fu, Lingyi</creatorcontrib><creatorcontrib>Chen, Wangbing</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Jingshu</creatorcontrib><creatorcontrib>Tian, Yun</creatorcontrib><creatorcontrib>Shi, Dingbo</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Qiu, Huijuan</creatorcontrib><creatorcontrib>Xiao, Xiangsheng</creatorcontrib><creatorcontrib>Kang, Tiebang</creatorcontrib><creatorcontrib>Huang, Wenlin</creatorcontrib><creatorcontrib>Wang, Shusen</creatorcontrib><creatorcontrib>Deng, Wuguo</creatorcontrib><title>Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Angiogenesis</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>BAX protein</subject><subject>Bcl-2 protein</subject><subject>Berberine</subject><subject>Berberine - pharmacology</subject><subject>Berberine - therapeutic use</subject><subject>Binding</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Caspase</subject><subject>Caspases - metabolism</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell morphology</subject><subject>Cell Movement - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Colorectal cancer</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>Cyclooxygenase-2</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochromes c - metabolism</subject><subject>Cytology</subject><subject>Cytosol</subject><subject>Humans</subject><subject>Hydrastis canadensis</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Inhibition</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Lungs</subject><subject>Medical prognosis</subject><subject>Medical treatment</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Non-small cell lung carcinoma</subject><subject>Nuclear transport</subject><subject>Oncology</subject><subject>Phosphorylation</subject><subject>Phytochemicals</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>Raf protein</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Telomerase</subject><subject>Telomerase - metabolism</subject><subject>Transcription Factor AP-2 - metabolism</subject><subject>Translocation</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfILDEhkUz8St2vEFqo3lJFUV0QOwsx_FkMsrYwU5A3fFLbPmIfhOZTlq1iI2vdX3uuedenyh6jeAEEY6Sreu9Vc2kddZMIGQCU_gkOkaC4JhhSJ4-uB9FL0LYQpiSjLHn0REeohiO4-jXufGF8bU1YKV8ZboAzj7FONmspp9Xp-DjLL75c57kl99ifAoWy1mMbn4nX6fzGVC2BPl15_TGu52JdZKr0KpgwFVdDbpqW4HOgau-bb0JASz6nbIgV1YbD3LTNGDu3c9u8zJ6tlZNMK_GeBJ9mU1X-SK-uJwv87OLWKeYdTFlHOGM4kyvU1FgWKKSl2UqkEqVglgXBSclo1pllBMICVKcQQMVg1QgwhA5id4eeNvGBTkuL0hEMScp4VAMiOUBUTq1la2vd8pfS6dqeZtwvpLKd7VujCQlZGhoAY0oKEWlKGBGC8xFSgku0L7bh7FbX-xMqY3tvGoekT5-sfVGVu6HHH4WZbdy348E3n3vTejkrg56WJuyxvV73QgxggTnA_TdP9D_T0cPKO1dCN6s78UgKPeGuquSe0PJ0VBD2ZuHg9wX3TmI_AWiMsXl</recordid><startdate>20130715</startdate><enddate>20130715</enddate><creator>Fu, Lingyi</creator><creator>Chen, Wangbing</creator><creator>Guo, Wei</creator><creator>Wang, Jingshu</creator><creator>Tian, Yun</creator><creator>Shi, Dingbo</creator><creator>Zhang, Xiaohong</creator><creator>Qiu, Huijuan</creator><creator>Xiao, Xiangsheng</creator><creator>Kang, Tiebang</creator><creator>Huang, Wenlin</creator><creator>Wang, Shusen</creator><creator>Deng, Wuguo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130715</creationdate><title>Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth</title><author>Fu, Lingyi ; Chen, Wangbing ; Guo, Wei ; Wang, Jingshu ; Tian, Yun ; Shi, Dingbo ; Zhang, Xiaohong ; Qiu, Huijuan ; Xiao, Xiangsheng ; Kang, Tiebang ; Huang, Wenlin ; Wang, Shusen ; Deng, Wuguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-467128428cf59b20d1d7dd591a5aa02cbb73d64ca84730031a760e0a604913613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Angiogenesis</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>BAX protein</topic><topic>Bcl-2 protein</topic><topic>Berberine</topic><topic>Berberine - pharmacology</topic><topic>Berberine - therapeutic use</topic><topic>Binding</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Caspase</topic><topic>Caspases - metabolism</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell morphology</topic><topic>Cell Movement - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Colorectal cancer</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>Cyclooxygenase-2</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochromes c - metabolism</topic><topic>Cytology</topic><topic>Cytosol</topic><topic>Humans</topic><topic>Hydrastis canadensis</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Inhibition</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Lungs</topic><topic>Medical prognosis</topic><topic>Medical treatment</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Non-small cell lung carcinoma</topic><topic>Nuclear transport</topic><topic>Oncology</topic><topic>Phosphorylation</topic><topic>Phytochemicals</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>Raf protein</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Telomerase</topic><topic>Telomerase - metabolism</topic><topic>Transcription Factor AP-2 - metabolism</topic><topic>Translocation</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Lingyi</creatorcontrib><creatorcontrib>Chen, Wangbing</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Jingshu</creatorcontrib><creatorcontrib>Tian, Yun</creatorcontrib><creatorcontrib>Shi, Dingbo</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><creatorcontrib>Qiu, Huijuan</creatorcontrib><creatorcontrib>Xiao, Xiangsheng</creatorcontrib><creatorcontrib>Kang, Tiebang</creatorcontrib><creatorcontrib>Huang, Wenlin</creatorcontrib><creatorcontrib>Wang, Shusen</creatorcontrib><creatorcontrib>Deng, Wuguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Lingyi</au><au>Chen, Wangbing</au><au>Guo, Wei</au><au>Wang, Jingshu</au><au>Tian, Yun</au><au>Shi, Dingbo</au><au>Zhang, Xiaohong</au><au>Qiu, Huijuan</au><au>Xiao, Xiangsheng</au><au>Kang, Tiebang</au><au>Huang, Wenlin</au><au>Wang, Shusen</au><au>Deng, Wuguo</au><au>Xiao, Gutian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-07-15</date><risdate>2013</risdate><volume>8</volume><issue>7</issue><spage>e69240</spage><epage>e69240</epage><pages>e69240-e69240</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23869238</pmid><doi>10.1371/journal.pone.0069240</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-07, Vol.8 (7), p.e69240-e69240 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1427353709 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein Angiogenesis Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis Apoptosis - drug effects BAX protein Bcl-2 protein Berberine Berberine - pharmacology Berberine - therapeutic use Binding Cancer Cancer therapies Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Caspase Caspases - metabolism Cell growth Cell Line, Tumor Cell migration Cell morphology Cell Movement - drug effects Cell proliferation Cell Proliferation - drug effects Colorectal cancer Cyclooxygenase 2 - metabolism Cyclooxygenase-2 Cytochrome Cytochrome c Cytochromes c - metabolism Cytology Cytosol Humans Hydrastis canadensis Hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Inhibition Kinases Laboratories Lung cancer Lung diseases Lung Neoplasms - drug therapy Lung Neoplasms - metabolism Lung Neoplasms - pathology Lungs Medical prognosis Medical treatment Mitochondria Molecular modelling NF-kappa B - metabolism NF-κB protein Non-small cell lung carcinoma Nuclear transport Oncology Phosphorylation Phytochemicals Poly(ADP-ribose) polymerase Prostate cancer Proteins Raf protein Rodents Signal transduction Signal Transduction - drug effects Signaling Stem cells Telomerase Telomerase - metabolism Transcription Factor AP-2 - metabolism Translocation Tumors Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism |
title | Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berberine%20Targets%20AP-2/hTERT,%20NF-%CE%BAB/COX-2,%20HIF-1%CE%B1/VEGF%20and%20Cytochrome-c/Caspase%20Signaling%20to%20Suppress%20Human%20Cancer%20Cell%20Growth&rft.jtitle=PloS%20one&rft.au=Fu,%20Lingyi&rft.date=2013-07-15&rft.volume=8&rft.issue=7&rft.spage=e69240&rft.epage=e69240&rft.pages=e69240-e69240&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0069240&rft_dat=%3Cproquest_plos_%3E3052791191%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427353709&rft_id=info:pmid/23869238&rft_doaj_id=oai_doaj_org_article_3d0611a70e9b441d9b084b2795432b11&rfr_iscdi=true |