Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence
Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplan...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-07, Vol.8 (7), p.e68834-e68834 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e68834 |
---|---|
container_issue | 7 |
container_start_page | e68834 |
container_title | PloS one |
container_volume | 8 |
creator | den Haan, Joost Huisman, Jef Dekker, Friso ten Brinke, Jacomina L Ford, Amanda K van Ooijen, Jan van Duyl, Fleur C Vermeij, Mark J A Visser, Petra M |
description | Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.
We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate.
Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems. |
doi_str_mv | 10.1371/journal.pone.0068834 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1398195702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478417345</galeid><doaj_id>oai_doaj_org_article_97ed67b72f2b4c1dbb4a64a602b9c67d</doaj_id><sourcerecordid>A478417345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7vVyZJ9UwihaRcCgZ5uhSzJXi2ytJHkHt6-2qyzrEsuggQyo29-z4xmiuIlBEuIGfyw8WNwwi633uklALSuMXlUnMIGowVFAD8--j4pnsW4AaDCNaVPixOUT9gQdlrISxFTqXTSMhnvSt-VbkzBaJdKawaTxK3ZuHIQMnhhe6FL4VQZteiDiLH8bdL64LMwTo1Sq7Kzow86Su2kfl486YSN-sV0nhU_Lj99v_iyuLr-vLo4v1pIhqq0YIRoJisC2g5jwRRFqCNUYCoRUpWgABJJBanrWjFQdwBKCirU4Aop1uZLfFa83uturY98qk_kEDc1bCoGUCZWe0J5seHbYAYR_nIvDL81-NBzEZKRVvOGaUVZy1CHWiKhalsiaN4AtY2kTGWtj9PfxnbQKmeagrAz0fmNM2ve-18c50goAFng3SQQ_M2oY-KDyQWzVjjtxxw3gaiiEGLyABRA0CDc7FJ88x96fyEmqhc5V-M6n0OUO1F-TlhNIMOkytTyHiovpQcjc991JttnDu9nDplJ-k_qxRgjX337-nD2-uecfXvErrWwaR29HXe9Gecg2YO5V2MMuju8BwR8NzZ31eC7seHT2GS3V8dveXC6mxP8DyDeEeU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398195702</pqid></control><display><type>article</type><title>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>den Haan, Joost ; Huisman, Jef ; Dekker, Friso ; ten Brinke, Jacomina L ; Ford, Amanda K ; van Ooijen, Jan ; van Duyl, Fleur C ; Vermeij, Mark J A ; Visser, Petra M</creator><contributor>Verbruggen, Heroen</contributor><creatorcontrib>den Haan, Joost ; Huisman, Jef ; Dekker, Friso ; ten Brinke, Jacomina L ; Ford, Amanda K ; van Ooijen, Jan ; van Duyl, Fleur C ; Vermeij, Mark J A ; Visser, Petra M ; Verbruggen, Heroen</creatorcontrib><description>Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.
We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate.
Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0068834</identifier><identifier>PMID: 23861947</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algae ; Ammonium ; Aquatic ecosystems ; Aquatic plants ; Biodiversity ; Biology ; Caribbean Region ; Chlorophyll ; Chlorophyta ; Chlorophyta - metabolism ; Constraining ; Coral reef ecosystems ; Coral reefs ; Earth Sciences ; Ecosystems ; Environment ; Environmental changes ; Environmental degradation ; Eutrophication ; Experiments ; Fluorescence ; Freshwater ; Freshwater ecosystems ; Grasses ; Limiting nutrients ; Lobophora variegata ; Marine ; Marine ecosystems ; Marine plants ; Methods ; Nitrogen ; Nutrients ; Phosphates ; Phosphorus ; Phytoplankton ; Plankton ; Primary production ; Sargassum ; Seagrasses ; Seawater ; Seaweed - metabolism ; Seaweeds ; Spectrometry, Fluorescence - instrumentation ; Spectrometry, Fluorescence - methods ; Starvation - metabolism ; Studies ; Thalassia testudinum ; Ulva lactuca ; Water quality</subject><ispartof>PloS one, 2013-07, Vol.8 (7), p.e68834-e68834</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 den Haan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 den Haan et al 2013 den Haan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</citedby><cites>FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2097,2916,23848,27906,27907,53773,53775,79350,79351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Verbruggen, Heroen</contributor><creatorcontrib>den Haan, Joost</creatorcontrib><creatorcontrib>Huisman, Jef</creatorcontrib><creatorcontrib>Dekker, Friso</creatorcontrib><creatorcontrib>ten Brinke, Jacomina L</creatorcontrib><creatorcontrib>Ford, Amanda K</creatorcontrib><creatorcontrib>van Ooijen, Jan</creatorcontrib><creatorcontrib>van Duyl, Fleur C</creatorcontrib><creatorcontrib>Vermeij, Mark J A</creatorcontrib><creatorcontrib>Visser, Petra M</creatorcontrib><title>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.
We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate.
Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.</description><subject>Algae</subject><subject>Ammonium</subject><subject>Aquatic ecosystems</subject><subject>Aquatic plants</subject><subject>Biodiversity</subject><subject>Biology</subject><subject>Caribbean Region</subject><subject>Chlorophyll</subject><subject>Chlorophyta</subject><subject>Chlorophyta - metabolism</subject><subject>Constraining</subject><subject>Coral reef ecosystems</subject><subject>Coral reefs</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental changes</subject><subject>Environmental degradation</subject><subject>Eutrophication</subject><subject>Experiments</subject><subject>Fluorescence</subject><subject>Freshwater</subject><subject>Freshwater ecosystems</subject><subject>Grasses</subject><subject>Limiting nutrients</subject><subject>Lobophora variegata</subject><subject>Marine</subject><subject>Marine ecosystems</subject><subject>Marine plants</subject><subject>Methods</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Primary production</subject><subject>Sargassum</subject><subject>Seagrasses</subject><subject>Seawater</subject><subject>Seaweed - metabolism</subject><subject>Seaweeds</subject><subject>Spectrometry, Fluorescence - instrumentation</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Starvation - metabolism</subject><subject>Studies</subject><subject>Thalassia testudinum</subject><subject>Ulva lactuca</subject><subject>Water quality</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7vVyZJ9UwihaRcCgZ5uhSzJXi2ytJHkHt6-2qyzrEsuggQyo29-z4xmiuIlBEuIGfyw8WNwwi633uklALSuMXlUnMIGowVFAD8--j4pnsW4AaDCNaVPixOUT9gQdlrISxFTqXTSMhnvSt-VbkzBaJdKawaTxK3ZuHIQMnhhe6FL4VQZteiDiLH8bdL64LMwTo1Sq7Kzow86Su2kfl486YSN-sV0nhU_Lj99v_iyuLr-vLo4v1pIhqq0YIRoJisC2g5jwRRFqCNUYCoRUpWgABJJBanrWjFQdwBKCirU4Aop1uZLfFa83uturY98qk_kEDc1bCoGUCZWe0J5seHbYAYR_nIvDL81-NBzEZKRVvOGaUVZy1CHWiKhalsiaN4AtY2kTGWtj9PfxnbQKmeagrAz0fmNM2ve-18c50goAFng3SQQ_M2oY-KDyQWzVjjtxxw3gaiiEGLyABRA0CDc7FJ88x96fyEmqhc5V-M6n0OUO1F-TlhNIMOkytTyHiovpQcjc991JttnDu9nDplJ-k_qxRgjX337-nD2-uecfXvErrWwaR29HXe9Gecg2YO5V2MMuju8BwR8NzZ31eC7seHT2GS3V8dveXC6mxP8DyDeEeU</recordid><startdate>20130705</startdate><enddate>20130705</enddate><creator>den Haan, Joost</creator><creator>Huisman, Jef</creator><creator>Dekker, Friso</creator><creator>ten Brinke, Jacomina L</creator><creator>Ford, Amanda K</creator><creator>van Ooijen, Jan</creator><creator>van Duyl, Fleur C</creator><creator>Vermeij, Mark J A</creator><creator>Visser, Petra M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130705</creationdate><title>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</title><author>den Haan, Joost ; Huisman, Jef ; Dekker, Friso ; ten Brinke, Jacomina L ; Ford, Amanda K ; van Ooijen, Jan ; van Duyl, Fleur C ; Vermeij, Mark J A ; Visser, Petra M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Ammonium</topic><topic>Aquatic ecosystems</topic><topic>Aquatic plants</topic><topic>Biodiversity</topic><topic>Biology</topic><topic>Caribbean Region</topic><topic>Chlorophyll</topic><topic>Chlorophyta</topic><topic>Chlorophyta - metabolism</topic><topic>Constraining</topic><topic>Coral reef ecosystems</topic><topic>Coral reefs</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental changes</topic><topic>Environmental degradation</topic><topic>Eutrophication</topic><topic>Experiments</topic><topic>Fluorescence</topic><topic>Freshwater</topic><topic>Freshwater ecosystems</topic><topic>Grasses</topic><topic>Limiting nutrients</topic><topic>Lobophora variegata</topic><topic>Marine</topic><topic>Marine ecosystems</topic><topic>Marine plants</topic><topic>Methods</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Primary production</topic><topic>Sargassum</topic><topic>Seagrasses</topic><topic>Seawater</topic><topic>Seaweed - metabolism</topic><topic>Seaweeds</topic><topic>Spectrometry, Fluorescence - instrumentation</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Starvation - metabolism</topic><topic>Studies</topic><topic>Thalassia testudinum</topic><topic>Ulva lactuca</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Haan, Joost</creatorcontrib><creatorcontrib>Huisman, Jef</creatorcontrib><creatorcontrib>Dekker, Friso</creatorcontrib><creatorcontrib>ten Brinke, Jacomina L</creatorcontrib><creatorcontrib>Ford, Amanda K</creatorcontrib><creatorcontrib>van Ooijen, Jan</creatorcontrib><creatorcontrib>van Duyl, Fleur C</creatorcontrib><creatorcontrib>Vermeij, Mark J A</creatorcontrib><creatorcontrib>Visser, Petra M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Haan, Joost</au><au>Huisman, Jef</au><au>Dekker, Friso</au><au>ten Brinke, Jacomina L</au><au>Ford, Amanda K</au><au>van Ooijen, Jan</au><au>van Duyl, Fleur C</au><au>Vermeij, Mark J A</au><au>Visser, Petra M</au><au>Verbruggen, Heroen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-07-05</date><risdate>2013</risdate><volume>8</volume><issue>7</issue><spage>e68834</spage><epage>e68834</epage><pages>e68834-e68834</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.
We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate.
Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23861947</pmid><doi>10.1371/journal.pone.0068834</doi><tpages>e68834</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-07, Vol.8 (7), p.e68834-e68834 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1398195702 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algae Ammonium Aquatic ecosystems Aquatic plants Biodiversity Biology Caribbean Region Chlorophyll Chlorophyta Chlorophyta - metabolism Constraining Coral reef ecosystems Coral reefs Earth Sciences Ecosystems Environment Environmental changes Environmental degradation Eutrophication Experiments Fluorescence Freshwater Freshwater ecosystems Grasses Limiting nutrients Lobophora variegata Marine Marine ecosystems Marine plants Methods Nitrogen Nutrients Phosphates Phosphorus Phytoplankton Plankton Primary production Sargassum Seagrasses Seawater Seaweed - metabolism Seaweeds Spectrometry, Fluorescence - instrumentation Spectrometry, Fluorescence - methods Starvation - metabolism Studies Thalassia testudinum Ulva lactuca Water quality |
title | Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20detection%20of%20nutrient%20limitation%20in%20macroalgae%20and%20seagrass%20with%20nutrient-induced%20fluorescence&rft.jtitle=PloS%20one&rft.au=den%20Haan,%20Joost&rft.date=2013-07-05&rft.volume=8&rft.issue=7&rft.spage=e68834&rft.epage=e68834&rft.pages=e68834-e68834&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0068834&rft_dat=%3Cgale_plos_%3EA478417345%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398195702&rft_id=info:pmid/23861947&rft_galeid=A478417345&rft_doaj_id=oai_doaj_org_article_97ed67b72f2b4c1dbb4a64a602b9c67d&rfr_iscdi=true |