Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence

Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-07, Vol.8 (7), p.e68834-e68834
Hauptverfasser: den Haan, Joost, Huisman, Jef, Dekker, Friso, ten Brinke, Jacomina L, Ford, Amanda K, van Ooijen, Jan, van Duyl, Fleur C, Vermeij, Mark J A, Visser, Petra M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e68834
container_issue 7
container_start_page e68834
container_title PloS one
container_volume 8
creator den Haan, Joost
Huisman, Jef
Dekker, Friso
ten Brinke, Jacomina L
Ford, Amanda K
van Ooijen, Jan
van Duyl, Fleur C
Vermeij, Mark J A
Visser, Petra M
description Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses. We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate. Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.
doi_str_mv 10.1371/journal.pone.0068834
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1398195702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478417345</galeid><doaj_id>oai_doaj_org_article_97ed67b72f2b4c1dbb4a64a602b9c67d</doaj_id><sourcerecordid>A478417345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7vVyZJ9UwihaRcCgZ5uhSzJXi2ytJHkHt6-2qyzrEsuggQyo29-z4xmiuIlBEuIGfyw8WNwwi633uklALSuMXlUnMIGowVFAD8--j4pnsW4AaDCNaVPixOUT9gQdlrISxFTqXTSMhnvSt-VbkzBaJdKawaTxK3ZuHIQMnhhe6FL4VQZteiDiLH8bdL64LMwTo1Sq7Kzow86Su2kfl486YSN-sV0nhU_Lj99v_iyuLr-vLo4v1pIhqq0YIRoJisC2g5jwRRFqCNUYCoRUpWgABJJBanrWjFQdwBKCirU4Aop1uZLfFa83uturY98qk_kEDc1bCoGUCZWe0J5seHbYAYR_nIvDL81-NBzEZKRVvOGaUVZy1CHWiKhalsiaN4AtY2kTGWtj9PfxnbQKmeagrAz0fmNM2ve-18c50goAFng3SQQ_M2oY-KDyQWzVjjtxxw3gaiiEGLyABRA0CDc7FJ88x96fyEmqhc5V-M6n0OUO1F-TlhNIMOkytTyHiovpQcjc991JttnDu9nDplJ-k_qxRgjX337-nD2-uecfXvErrWwaR29HXe9Gecg2YO5V2MMuju8BwR8NzZ31eC7seHT2GS3V8dveXC6mxP8DyDeEeU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398195702</pqid></control><display><type>article</type><title>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>den Haan, Joost ; Huisman, Jef ; Dekker, Friso ; ten Brinke, Jacomina L ; Ford, Amanda K ; van Ooijen, Jan ; van Duyl, Fleur C ; Vermeij, Mark J A ; Visser, Petra M</creator><contributor>Verbruggen, Heroen</contributor><creatorcontrib>den Haan, Joost ; Huisman, Jef ; Dekker, Friso ; ten Brinke, Jacomina L ; Ford, Amanda K ; van Ooijen, Jan ; van Duyl, Fleur C ; Vermeij, Mark J A ; Visser, Petra M ; Verbruggen, Heroen</creatorcontrib><description>Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses. We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate. Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0068834</identifier><identifier>PMID: 23861947</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algae ; Ammonium ; Aquatic ecosystems ; Aquatic plants ; Biodiversity ; Biology ; Caribbean Region ; Chlorophyll ; Chlorophyta ; Chlorophyta - metabolism ; Constraining ; Coral reef ecosystems ; Coral reefs ; Earth Sciences ; Ecosystems ; Environment ; Environmental changes ; Environmental degradation ; Eutrophication ; Experiments ; Fluorescence ; Freshwater ; Freshwater ecosystems ; Grasses ; Limiting nutrients ; Lobophora variegata ; Marine ; Marine ecosystems ; Marine plants ; Methods ; Nitrogen ; Nutrients ; Phosphates ; Phosphorus ; Phytoplankton ; Plankton ; Primary production ; Sargassum ; Seagrasses ; Seawater ; Seaweed - metabolism ; Seaweeds ; Spectrometry, Fluorescence - instrumentation ; Spectrometry, Fluorescence - methods ; Starvation - metabolism ; Studies ; Thalassia testudinum ; Ulva lactuca ; Water quality</subject><ispartof>PloS one, 2013-07, Vol.8 (7), p.e68834-e68834</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 den Haan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 den Haan et al 2013 den Haan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</citedby><cites>FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2097,2916,23848,27906,27907,53773,53775,79350,79351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Verbruggen, Heroen</contributor><creatorcontrib>den Haan, Joost</creatorcontrib><creatorcontrib>Huisman, Jef</creatorcontrib><creatorcontrib>Dekker, Friso</creatorcontrib><creatorcontrib>ten Brinke, Jacomina L</creatorcontrib><creatorcontrib>Ford, Amanda K</creatorcontrib><creatorcontrib>van Ooijen, Jan</creatorcontrib><creatorcontrib>van Duyl, Fleur C</creatorcontrib><creatorcontrib>Vermeij, Mark J A</creatorcontrib><creatorcontrib>Visser, Petra M</creatorcontrib><title>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses. We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate. Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.</description><subject>Algae</subject><subject>Ammonium</subject><subject>Aquatic ecosystems</subject><subject>Aquatic plants</subject><subject>Biodiversity</subject><subject>Biology</subject><subject>Caribbean Region</subject><subject>Chlorophyll</subject><subject>Chlorophyta</subject><subject>Chlorophyta - metabolism</subject><subject>Constraining</subject><subject>Coral reef ecosystems</subject><subject>Coral reefs</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental changes</subject><subject>Environmental degradation</subject><subject>Eutrophication</subject><subject>Experiments</subject><subject>Fluorescence</subject><subject>Freshwater</subject><subject>Freshwater ecosystems</subject><subject>Grasses</subject><subject>Limiting nutrients</subject><subject>Lobophora variegata</subject><subject>Marine</subject><subject>Marine ecosystems</subject><subject>Marine plants</subject><subject>Methods</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Primary production</subject><subject>Sargassum</subject><subject>Seagrasses</subject><subject>Seawater</subject><subject>Seaweed - metabolism</subject><subject>Seaweeds</subject><subject>Spectrometry, Fluorescence - instrumentation</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Starvation - metabolism</subject><subject>Studies</subject><subject>Thalassia testudinum</subject><subject>Ulva lactuca</subject><subject>Water quality</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7vVyZJ9UwihaRcCgZ5uhSzJXi2ytJHkHt6-2qyzrEsuggQyo29-z4xmiuIlBEuIGfyw8WNwwi633uklALSuMXlUnMIGowVFAD8--j4pnsW4AaDCNaVPixOUT9gQdlrISxFTqXTSMhnvSt-VbkzBaJdKawaTxK3ZuHIQMnhhe6FL4VQZteiDiLH8bdL64LMwTo1Sq7Kzow86Su2kfl486YSN-sV0nhU_Lj99v_iyuLr-vLo4v1pIhqq0YIRoJisC2g5jwRRFqCNUYCoRUpWgABJJBanrWjFQdwBKCirU4Aop1uZLfFa83uturY98qk_kEDc1bCoGUCZWe0J5seHbYAYR_nIvDL81-NBzEZKRVvOGaUVZy1CHWiKhalsiaN4AtY2kTGWtj9PfxnbQKmeagrAz0fmNM2ve-18c50goAFng3SQQ_M2oY-KDyQWzVjjtxxw3gaiiEGLyABRA0CDc7FJ88x96fyEmqhc5V-M6n0OUO1F-TlhNIMOkytTyHiovpQcjc991JttnDu9nDplJ-k_qxRgjX337-nD2-uecfXvErrWwaR29HXe9Gecg2YO5V2MMuju8BwR8NzZ31eC7seHT2GS3V8dveXC6mxP8DyDeEeU</recordid><startdate>20130705</startdate><enddate>20130705</enddate><creator>den Haan, Joost</creator><creator>Huisman, Jef</creator><creator>Dekker, Friso</creator><creator>ten Brinke, Jacomina L</creator><creator>Ford, Amanda K</creator><creator>van Ooijen, Jan</creator><creator>van Duyl, Fleur C</creator><creator>Vermeij, Mark J A</creator><creator>Visser, Petra M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130705</creationdate><title>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</title><author>den Haan, Joost ; Huisman, Jef ; Dekker, Friso ; ten Brinke, Jacomina L ; Ford, Amanda K ; van Ooijen, Jan ; van Duyl, Fleur C ; Vermeij, Mark J A ; Visser, Petra M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-744e7c540bf33a7d622f46a36c22d5a6014c6a4888d708f01c60529352d7b0143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algae</topic><topic>Ammonium</topic><topic>Aquatic ecosystems</topic><topic>Aquatic plants</topic><topic>Biodiversity</topic><topic>Biology</topic><topic>Caribbean Region</topic><topic>Chlorophyll</topic><topic>Chlorophyta</topic><topic>Chlorophyta - metabolism</topic><topic>Constraining</topic><topic>Coral reef ecosystems</topic><topic>Coral reefs</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental changes</topic><topic>Environmental degradation</topic><topic>Eutrophication</topic><topic>Experiments</topic><topic>Fluorescence</topic><topic>Freshwater</topic><topic>Freshwater ecosystems</topic><topic>Grasses</topic><topic>Limiting nutrients</topic><topic>Lobophora variegata</topic><topic>Marine</topic><topic>Marine ecosystems</topic><topic>Marine plants</topic><topic>Methods</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Primary production</topic><topic>Sargassum</topic><topic>Seagrasses</topic><topic>Seawater</topic><topic>Seaweed - metabolism</topic><topic>Seaweeds</topic><topic>Spectrometry, Fluorescence - instrumentation</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Starvation - metabolism</topic><topic>Studies</topic><topic>Thalassia testudinum</topic><topic>Ulva lactuca</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Haan, Joost</creatorcontrib><creatorcontrib>Huisman, Jef</creatorcontrib><creatorcontrib>Dekker, Friso</creatorcontrib><creatorcontrib>ten Brinke, Jacomina L</creatorcontrib><creatorcontrib>Ford, Amanda K</creatorcontrib><creatorcontrib>van Ooijen, Jan</creatorcontrib><creatorcontrib>van Duyl, Fleur C</creatorcontrib><creatorcontrib>Vermeij, Mark J A</creatorcontrib><creatorcontrib>Visser, Petra M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Haan, Joost</au><au>Huisman, Jef</au><au>Dekker, Friso</au><au>ten Brinke, Jacomina L</au><au>Ford, Amanda K</au><au>van Ooijen, Jan</au><au>van Duyl, Fleur C</au><au>Vermeij, Mark J A</au><au>Visser, Petra M</au><au>Verbruggen, Heroen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-07-05</date><risdate>2013</risdate><volume>8</volume><issue>7</issue><spage>e68834</spage><epage>e68834</epage><pages>e68834-e68834</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses. We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate. Our extension of the NIFT technique offers an easy and fast method (30-60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23861947</pmid><doi>10.1371/journal.pone.0068834</doi><tpages>e68834</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-07, Vol.8 (7), p.e68834-e68834
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1398195702
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algae
Ammonium
Aquatic ecosystems
Aquatic plants
Biodiversity
Biology
Caribbean Region
Chlorophyll
Chlorophyta
Chlorophyta - metabolism
Constraining
Coral reef ecosystems
Coral reefs
Earth Sciences
Ecosystems
Environment
Environmental changes
Environmental degradation
Eutrophication
Experiments
Fluorescence
Freshwater
Freshwater ecosystems
Grasses
Limiting nutrients
Lobophora variegata
Marine
Marine ecosystems
Marine plants
Methods
Nitrogen
Nutrients
Phosphates
Phosphorus
Phytoplankton
Plankton
Primary production
Sargassum
Seagrasses
Seawater
Seaweed - metabolism
Seaweeds
Spectrometry, Fluorescence - instrumentation
Spectrometry, Fluorescence - methods
Starvation - metabolism
Studies
Thalassia testudinum
Ulva lactuca
Water quality
title Fast detection of nutrient limitation in macroalgae and seagrass with nutrient-induced fluorescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20detection%20of%20nutrient%20limitation%20in%20macroalgae%20and%20seagrass%20with%20nutrient-induced%20fluorescence&rft.jtitle=PloS%20one&rft.au=den%20Haan,%20Joost&rft.date=2013-07-05&rft.volume=8&rft.issue=7&rft.spage=e68834&rft.epage=e68834&rft.pages=e68834-e68834&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0068834&rft_dat=%3Cgale_plos_%3EA478417345%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398195702&rft_id=info:pmid/23861947&rft_galeid=A478417345&rft_doaj_id=oai_doaj_org_article_97ed67b72f2b4c1dbb4a64a602b9c67d&rfr_iscdi=true