Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity
Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldt(fm)) conveys high-level resistance to β-lactam...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-07, Vol.8 (7), p.e67831-e67831 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e67831 |
---|---|
container_issue | 7 |
container_start_page | e67831 |
container_title | PloS one |
container_volume | 8 |
creator | Triboulet, Sébastien Dubée, Vincent Lecoq, Lauriane Bougault, Catherine Mainardi, Jean-Luc Rice, Louis B Ethève-Quelquejeu, Mélanie Gutmann, Laurent Marie, Arul Dubost, Lionel Hugonnet, Jean-Emmanuel Simorre, Jean-Pierre Arthur, Michel |
description | Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldt(fm)) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldt(fm) does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldt(fm) by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldt(fm) inactivation by ampicillin and ceftriaxone. For ampicillin, Ldt(fm) acylation was followed by rupture of the C(5)-C(6) bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldt(fm) blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation. |
doi_str_mv | 10.1371/journal.pone.0067831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1394485699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aa2ddf5aa04449c4981354f023d448f0</doaj_id><sourcerecordid>3012500051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-2cb522e17de444491f7f3c9300a3670363f83df6a251519e2ca214ad7ba924d63</originalsourceid><addsrcrecordid>eNptUttu1DAQjRCIXuAPEETiBSSy-BI78UulqlxasRIv8GzN-tJ6lbWD7azU3-JD-KZ6u2nVVvhlrJlzzswcTVW9wWiBaYc_r8MUPQyLMXizQIh3PcXPqkMsKGk4QfT5g_9BdZTSGiFGe85fVgekRNxjdljBD-dNdqq2BvIUTaqDrZefvjQ5gk-jGbPTkEztPKjstpBd8LWKrlBgqG2I9b-_zVBqsKnBZ7cqXxNdqd3iXb5-Vb2wMCTzeo7H1e9vX3-dnTfLn98vzk6XjWIc5YaoFSPE4E6btjyBbWepEhQhoLxDlFPbU205EIYZFoYoILgF3a1AkFZzely92-uOQ0hydidJTEXb9owLURAXe4QOsJZjdBuI1zKAk7eJEC8lxLLYYCQA0doyALSbRbWix5S1FhGqi5pFRetk7jatNkYr44thwyPRxxXvruRl2EraIcwpKQIf9wJXT2jnp0u5yyFMCWa92OKC_TA3i-HPZFKWG5eUGQbwJkxlxxZhVFzoWYG-fwL9vxPtHqViSCkaez8BRnJ3XXcsubsuOV9Xob19uPQ96e6c6A32Jc2z</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1394485699</pqid></control><display><type>article</type><title>Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Triboulet, Sébastien ; Dubée, Vincent ; Lecoq, Lauriane ; Bougault, Catherine ; Mainardi, Jean-Luc ; Rice, Louis B ; Ethève-Quelquejeu, Mélanie ; Gutmann, Laurent ; Marie, Arul ; Dubost, Lionel ; Hugonnet, Jean-Emmanuel ; Simorre, Jean-Pierre ; Arthur, Michel</creator><creatorcontrib>Triboulet, Sébastien ; Dubée, Vincent ; Lecoq, Lauriane ; Bougault, Catherine ; Mainardi, Jean-Luc ; Rice, Louis B ; Ethève-Quelquejeu, Mélanie ; Gutmann, Laurent ; Marie, Arul ; Dubost, Lionel ; Hugonnet, Jean-Emmanuel ; Simorre, Jean-Pierre ; Arthur, Michel</creatorcontrib><description>Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldt(fm)) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldt(fm) does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldt(fm) by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldt(fm) inactivation by ampicillin and ceftriaxone. For ampicillin, Ldt(fm) acylation was followed by rupture of the C(5)-C(6) bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldt(fm) blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0067831</identifier><identifier>PMID: 23861815</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acylation ; Amides ; Ampicillin ; Ampicillin - chemistry ; Antibacterial activity ; Antibiotics ; Bacteria ; Bacterial infections ; Bacterial Proteins ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - chemistry ; beta-Lactam Resistance ; Biochemistry, Molecular Biology ; Biology ; Carbonyls ; Catalysis ; Ceftriaxone ; Ceftriaxone - chemistry ; Cephems ; Coordination compounds ; Crosslinking ; Deactivation ; Drug resistance ; Enterococcus faecium ; Enterococcus faecium - chemistry ; Enterococcus faecium - enzymology ; Enzymes ; Ertapenem ; Fluorescence ; Hydrolysis ; Imipenem ; Imipenem - chemistry ; Inactivation ; Kinetics ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Medicine ; Minimum inhibitory concentration ; Mycobacterium tuberculosis ; NMR ; Nuclear magnetic resonance ; Optimization ; Penicillin ; Penicillin-binding protein ; Peptides ; Peptidoglycans ; Peptidyl Transferases ; Peptidyl Transferases - antagonists & inhibitors ; Peptidyl Transferases - chemistry ; Reaction kinetics ; Recombinant Proteins ; Recombinant Proteins - chemistry ; Serine ; Streptomyces ; Structural Biology ; Structure-Activity Relationship ; Substrate Specificity ; Tuberculosis ; β-Lactam antibiotics</subject><ispartof>PloS one, 2013-07, Vol.8 (7), p.e67831-e67831</ispartof><rights>2013 Triboulet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 Triboulet et al 2013 Triboulet et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-2cb522e17de444491f7f3c9300a3670363f83df6a251519e2ca214ad7ba924d63</citedby><cites>FETCH-LOGICAL-c560t-2cb522e17de444491f7f3c9300a3670363f83df6a251519e2ca214ad7ba924d63</cites><orcidid>0000-0002-7943-1342 ; 0000-0002-9982-4741 ; 0000-0002-4105-3243 ; 0000-0003-4104-140X ; 0000-0003-1007-636X ; 0000-0002-4159-0129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701632/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701632/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-01321589$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Triboulet, Sébastien</creatorcontrib><creatorcontrib>Dubée, Vincent</creatorcontrib><creatorcontrib>Lecoq, Lauriane</creatorcontrib><creatorcontrib>Bougault, Catherine</creatorcontrib><creatorcontrib>Mainardi, Jean-Luc</creatorcontrib><creatorcontrib>Rice, Louis B</creatorcontrib><creatorcontrib>Ethève-Quelquejeu, Mélanie</creatorcontrib><creatorcontrib>Gutmann, Laurent</creatorcontrib><creatorcontrib>Marie, Arul</creatorcontrib><creatorcontrib>Dubost, Lionel</creatorcontrib><creatorcontrib>Hugonnet, Jean-Emmanuel</creatorcontrib><creatorcontrib>Simorre, Jean-Pierre</creatorcontrib><creatorcontrib>Arthur, Michel</creatorcontrib><title>Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldt(fm)) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldt(fm) does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldt(fm) by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldt(fm) inactivation by ampicillin and ceftriaxone. For ampicillin, Ldt(fm) acylation was followed by rupture of the C(5)-C(6) bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldt(fm) blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation.</description><subject>Acylation</subject><subject>Amides</subject><subject>Ampicillin</subject><subject>Ampicillin - chemistry</subject><subject>Antibacterial activity</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bacterial Proteins</subject><subject>Bacterial Proteins - antagonists & inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>beta-Lactam Resistance</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>Carbonyls</subject><subject>Catalysis</subject><subject>Ceftriaxone</subject><subject>Ceftriaxone - chemistry</subject><subject>Cephems</subject><subject>Coordination compounds</subject><subject>Crosslinking</subject><subject>Deactivation</subject><subject>Drug resistance</subject><subject>Enterococcus faecium</subject><subject>Enterococcus faecium - chemistry</subject><subject>Enterococcus faecium - enzymology</subject><subject>Enzymes</subject><subject>Ertapenem</subject><subject>Fluorescence</subject><subject>Hydrolysis</subject><subject>Imipenem</subject><subject>Imipenem - chemistry</subject><subject>Inactivation</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Minimum inhibitory concentration</subject><subject>Mycobacterium tuberculosis</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Penicillin</subject><subject>Penicillin-binding protein</subject><subject>Peptides</subject><subject>Peptidoglycans</subject><subject>Peptidyl Transferases</subject><subject>Peptidyl Transferases - antagonists & inhibitors</subject><subject>Peptidyl Transferases - chemistry</subject><subject>Reaction kinetics</subject><subject>Recombinant Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Serine</subject><subject>Streptomyces</subject><subject>Structural Biology</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Tuberculosis</subject><subject>β-Lactam antibiotics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUttu1DAQjRCIXuAPEETiBSSy-BI78UulqlxasRIv8GzN-tJ6lbWD7azU3-JD-KZ6u2nVVvhlrJlzzswcTVW9wWiBaYc_r8MUPQyLMXizQIh3PcXPqkMsKGk4QfT5g_9BdZTSGiFGe85fVgekRNxjdljBD-dNdqq2BvIUTaqDrZefvjQ5gk-jGbPTkEztPKjstpBd8LWKrlBgqG2I9b-_zVBqsKnBZ7cqXxNdqd3iXb5-Vb2wMCTzeo7H1e9vX3-dnTfLn98vzk6XjWIc5YaoFSPE4E6btjyBbWepEhQhoLxDlFPbU205EIYZFoYoILgF3a1AkFZzely92-uOQ0hydidJTEXb9owLURAXe4QOsJZjdBuI1zKAk7eJEC8lxLLYYCQA0doyALSbRbWix5S1FhGqi5pFRetk7jatNkYr44thwyPRxxXvruRl2EraIcwpKQIf9wJXT2jnp0u5yyFMCWa92OKC_TA3i-HPZFKWG5eUGQbwJkxlxxZhVFzoWYG-fwL9vxPtHqViSCkaez8BRnJ3XXcsubsuOV9Xob19uPQ96e6c6A32Jc2z</recordid><startdate>20130704</startdate><enddate>20130704</enddate><creator>Triboulet, Sébastien</creator><creator>Dubée, Vincent</creator><creator>Lecoq, Lauriane</creator><creator>Bougault, Catherine</creator><creator>Mainardi, Jean-Luc</creator><creator>Rice, Louis B</creator><creator>Ethève-Quelquejeu, Mélanie</creator><creator>Gutmann, Laurent</creator><creator>Marie, Arul</creator><creator>Dubost, Lionel</creator><creator>Hugonnet, Jean-Emmanuel</creator><creator>Simorre, Jean-Pierre</creator><creator>Arthur, Michel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7943-1342</orcidid><orcidid>https://orcid.org/0000-0002-9982-4741</orcidid><orcidid>https://orcid.org/0000-0002-4105-3243</orcidid><orcidid>https://orcid.org/0000-0003-4104-140X</orcidid><orcidid>https://orcid.org/0000-0003-1007-636X</orcidid><orcidid>https://orcid.org/0000-0002-4159-0129</orcidid></search><sort><creationdate>20130704</creationdate><title>Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity</title><author>Triboulet, Sébastien ; Dubée, Vincent ; Lecoq, Lauriane ; Bougault, Catherine ; Mainardi, Jean-Luc ; Rice, Louis B ; Ethève-Quelquejeu, Mélanie ; Gutmann, Laurent ; Marie, Arul ; Dubost, Lionel ; Hugonnet, Jean-Emmanuel ; Simorre, Jean-Pierre ; Arthur, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-2cb522e17de444491f7f3c9300a3670363f83df6a251519e2ca214ad7ba924d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acylation</topic><topic>Amides</topic><topic>Ampicillin</topic><topic>Ampicillin - chemistry</topic><topic>Antibacterial activity</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bacterial Proteins</topic><topic>Bacterial Proteins - antagonists & inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>beta-Lactam Resistance</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>Carbonyls</topic><topic>Catalysis</topic><topic>Ceftriaxone</topic><topic>Ceftriaxone - chemistry</topic><topic>Cephems</topic><topic>Coordination compounds</topic><topic>Crosslinking</topic><topic>Deactivation</topic><topic>Drug resistance</topic><topic>Enterococcus faecium</topic><topic>Enterococcus faecium - chemistry</topic><topic>Enterococcus faecium - enzymology</topic><topic>Enzymes</topic><topic>Ertapenem</topic><topic>Fluorescence</topic><topic>Hydrolysis</topic><topic>Imipenem</topic><topic>Imipenem - chemistry</topic><topic>Inactivation</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Minimum inhibitory concentration</topic><topic>Mycobacterium tuberculosis</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Penicillin</topic><topic>Penicillin-binding protein</topic><topic>Peptides</topic><topic>Peptidoglycans</topic><topic>Peptidyl Transferases</topic><topic>Peptidyl Transferases - antagonists & inhibitors</topic><topic>Peptidyl Transferases - chemistry</topic><topic>Reaction kinetics</topic><topic>Recombinant Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Serine</topic><topic>Streptomyces</topic><topic>Structural Biology</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Tuberculosis</topic><topic>β-Lactam antibiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triboulet, Sébastien</creatorcontrib><creatorcontrib>Dubée, Vincent</creatorcontrib><creatorcontrib>Lecoq, Lauriane</creatorcontrib><creatorcontrib>Bougault, Catherine</creatorcontrib><creatorcontrib>Mainardi, Jean-Luc</creatorcontrib><creatorcontrib>Rice, Louis B</creatorcontrib><creatorcontrib>Ethève-Quelquejeu, Mélanie</creatorcontrib><creatorcontrib>Gutmann, Laurent</creatorcontrib><creatorcontrib>Marie, Arul</creatorcontrib><creatorcontrib>Dubost, Lionel</creatorcontrib><creatorcontrib>Hugonnet, Jean-Emmanuel</creatorcontrib><creatorcontrib>Simorre, Jean-Pierre</creatorcontrib><creatorcontrib>Arthur, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Triboulet, Sébastien</au><au>Dubée, Vincent</au><au>Lecoq, Lauriane</au><au>Bougault, Catherine</au><au>Mainardi, Jean-Luc</au><au>Rice, Louis B</au><au>Ethève-Quelquejeu, Mélanie</au><au>Gutmann, Laurent</au><au>Marie, Arul</au><au>Dubost, Lionel</au><au>Hugonnet, Jean-Emmanuel</au><au>Simorre, Jean-Pierre</au><au>Arthur, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-07-04</date><risdate>2013</risdate><volume>8</volume><issue>7</issue><spage>e67831</spage><epage>e67831</epage><pages>e67831-e67831</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldt(fm)) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldt(fm) does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldt(fm) by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldt(fm) inactivation by ampicillin and ceftriaxone. For ampicillin, Ldt(fm) acylation was followed by rupture of the C(5)-C(6) bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldt(fm) blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23861815</pmid><doi>10.1371/journal.pone.0067831</doi><orcidid>https://orcid.org/0000-0002-7943-1342</orcidid><orcidid>https://orcid.org/0000-0002-9982-4741</orcidid><orcidid>https://orcid.org/0000-0002-4105-3243</orcidid><orcidid>https://orcid.org/0000-0003-4104-140X</orcidid><orcidid>https://orcid.org/0000-0003-1007-636X</orcidid><orcidid>https://orcid.org/0000-0002-4159-0129</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-07, Vol.8 (7), p.e67831-e67831 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1394485699 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acylation Amides Ampicillin Ampicillin - chemistry Antibacterial activity Antibiotics Bacteria Bacterial infections Bacterial Proteins Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - chemistry beta-Lactam Resistance Biochemistry, Molecular Biology Biology Carbonyls Catalysis Ceftriaxone Ceftriaxone - chemistry Cephems Coordination compounds Crosslinking Deactivation Drug resistance Enterococcus faecium Enterococcus faecium - chemistry Enterococcus faecium - enzymology Enzymes Ertapenem Fluorescence Hydrolysis Imipenem Imipenem - chemistry Inactivation Kinetics Life Sciences Mass spectrometry Mass spectroscopy Medicine Minimum inhibitory concentration Mycobacterium tuberculosis NMR Nuclear magnetic resonance Optimization Penicillin Penicillin-binding protein Peptides Peptidoglycans Peptidyl Transferases Peptidyl Transferases - antagonists & inhibitors Peptidyl Transferases - chemistry Reaction kinetics Recombinant Proteins Recombinant Proteins - chemistry Serine Streptomyces Structural Biology Structure-Activity Relationship Substrate Specificity Tuberculosis β-Lactam antibiotics |
title | Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20features%20of%20L,D-transpeptidase%20inactivation%20critical%20for%20%CE%B2-lactam%20antibacterial%20activity&rft.jtitle=PloS%20one&rft.au=Triboulet,%20S%C3%A9bastien&rft.date=2013-07-04&rft.volume=8&rft.issue=7&rft.spage=e67831&rft.epage=e67831&rft.pages=e67831-e67831&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0067831&rft_dat=%3Cproquest_plos_%3E3012500051%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1394485699&rft_id=info:pmid/23861815&rft_doaj_id=oai_doaj_org_article_aa2ddf5aa04449c4981354f023d448f0&rfr_iscdi=true |