Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity

Some of insulin’s functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-06, Vol.8 (6), p.e67198
Hauptverfasser: Iwasaki, Yusaku, Shimomura, Kenju, Kohno, Daisuke, Dezaki, Katsuya, Ayush, Enkh-Amar, Nakabayashi, Hajime, Kubota, Naoto, Kadowaki, Takashi, Kakei, Masafumi, Nakata, Masanori, Yada, Toshihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e67198
container_title PloS one
container_volume 8
creator Iwasaki, Yusaku
Shimomura, Kenju
Kohno, Daisuke
Dezaki, Katsuya
Ayush, Enkh-Amar
Nakabayashi, Hajime
Kubota, Naoto
Kadowaki, Takashi
Kakei, Masafumi
Nakata, Masanori
Yada, Toshihiko
description Some of insulin’s functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10−12∼10−6 M) depolarized and increased cytosolic Ca2+ concentration ([Ca2+]i) in single NGNs. The insulin-induced [Ca2+]i increases were attenuated by L- and N-type Ca2+ channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10−7 M recruited a remarkably greater population of NGNs to [Ca2+]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca2+]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca2+ influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.
doi_str_mv 10.1371/journal.pone.0067198
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1371830955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3006243261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8f9371232fb0581c6d46d5fed016e551b39e88ce8d6cb1dc3628a9300c6931063</originalsourceid><addsrcrecordid>eNp1kt1u1DAQhSMEoqXwBkhY4hJl8U_iOlwgrRZKIwqL-Lu1HGe86yq1U9vZss_ES-KlKYILrjye-eYc6WiK4inBC8JOyctLPwWnhsXoHSww5qekEfeKY9IwWnKK2f2_6qPiUYyXGNdMcP6wOKJMVJjT6rj42bo4DdahpU52pxJE9F1t1ICWxkAAl9BHmIJ3EbVOD1Nv3QalrY-Q_w5C3jh0PimnA6iIdlahO8WVilr1gJTrc01f5IEZph-vUJsierOPZnLZ0zuU2fbzF1q-X6MPVgO6sWmLzvcjhHGrNlajdQfRpv3j4oFRQ4Qn83tSfDt7-3V1Xl6s37Wr5UWpGatSKUyT86GMmg7XgmjeV7yvDfSYcKhr0rEGhNAgeq470mvGqVANw1jzhhHM2Unx7FZ3HHyUc85RHlIXDDd1nYnXMzF1V9DrnFNQgxyDvVJhL72y8t-Js1u58TvJskXDcRZ4PgsEfz1BTP-xqW4pHXyMAcwfB4J_c3db8nAEcj4C9gtXlqhv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371830955</pqid></control><display><type>article</type><title>Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Iwasaki, Yusaku ; Shimomura, Kenju ; Kohno, Daisuke ; Dezaki, Katsuya ; Ayush, Enkh-Amar ; Nakabayashi, Hajime ; Kubota, Naoto ; Kadowaki, Takashi ; Kakei, Masafumi ; Nakata, Masanori ; Yada, Toshihiko</creator><contributor>Tache, Yvette</contributor><creatorcontrib>Iwasaki, Yusaku ; Shimomura, Kenju ; Kohno, Daisuke ; Dezaki, Katsuya ; Ayush, Enkh-Amar ; Nakabayashi, Hajime ; Kubota, Naoto ; Kadowaki, Takashi ; Kakei, Masafumi ; Nakata, Masanori ; Yada, Toshihiko ; Tache, Yvette</creatorcontrib><description>Some of insulin’s functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10−12∼10−6 M) depolarized and increased cytosolic Ca2+ concentration ([Ca2+]i) in single NGNs. The insulin-induced [Ca2+]i increases were attenuated by L- and N-type Ca2+ channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10−7 M recruited a remarkably greater population of NGNs to [Ca2+]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca2+]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca2+ influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0067198</identifier><identifier>PMID: 23840624</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Amphetamine ; Amphetamines ; Arcuate nucleus ; Biology ; Blood-brain barrier ; Calcium (intracellular) ; Calcium channels (N-type) ; Calcium influx ; Cocaine ; Cocaine- and amphetamine-regulated transcript protein ; Depolarization ; Diabetes ; Enzyme inhibitors ; Fibers ; Food ; Fura-2 ; Gastroenterology ; Ghrelin ; Glibenclamide ; Glucose metabolism ; Hypothalamus ; Insulin ; Insulin resistance ; Lipid metabolism ; Medicine ; Metabolic disorders ; Metabolism ; Mice ; Neurons ; Neuroprotection ; Nodose ganglion ; Obesity ; Pancreas ; Peptides ; Physiology ; Rodents ; Satiety ; Sensory neurons ; Signal transduction ; Substrates ; Transcription</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e67198</ispartof><rights>2013 Iwasaki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Iwasaki et al 2013 Iwasaki et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8f9371232fb0581c6d46d5fed016e551b39e88ce8d6cb1dc3628a9300c6931063</citedby><cites>FETCH-LOGICAL-c334t-8f9371232fb0581c6d46d5fed016e551b39e88ce8d6cb1dc3628a9300c6931063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693960/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693960/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Tache, Yvette</contributor><creatorcontrib>Iwasaki, Yusaku</creatorcontrib><creatorcontrib>Shimomura, Kenju</creatorcontrib><creatorcontrib>Kohno, Daisuke</creatorcontrib><creatorcontrib>Dezaki, Katsuya</creatorcontrib><creatorcontrib>Ayush, Enkh-Amar</creatorcontrib><creatorcontrib>Nakabayashi, Hajime</creatorcontrib><creatorcontrib>Kubota, Naoto</creatorcontrib><creatorcontrib>Kadowaki, Takashi</creatorcontrib><creatorcontrib>Kakei, Masafumi</creatorcontrib><creatorcontrib>Nakata, Masanori</creatorcontrib><creatorcontrib>Yada, Toshihiko</creatorcontrib><title>Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity</title><title>PloS one</title><description>Some of insulin’s functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10−12∼10−6 M) depolarized and increased cytosolic Ca2+ concentration ([Ca2+]i) in single NGNs. The insulin-induced [Ca2+]i increases were attenuated by L- and N-type Ca2+ channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10−7 M recruited a remarkably greater population of NGNs to [Ca2+]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca2+]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca2+ influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Amphetamine</subject><subject>Amphetamines</subject><subject>Arcuate nucleus</subject><subject>Biology</subject><subject>Blood-brain barrier</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels (N-type)</subject><subject>Calcium influx</subject><subject>Cocaine</subject><subject>Cocaine- and amphetamine-regulated transcript protein</subject><subject>Depolarization</subject><subject>Diabetes</subject><subject>Enzyme inhibitors</subject><subject>Fibers</subject><subject>Food</subject><subject>Fura-2</subject><subject>Gastroenterology</subject><subject>Ghrelin</subject><subject>Glibenclamide</subject><subject>Glucose metabolism</subject><subject>Hypothalamus</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Lipid metabolism</subject><subject>Medicine</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Neurons</subject><subject>Neuroprotection</subject><subject>Nodose ganglion</subject><subject>Obesity</subject><subject>Pancreas</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Rodents</subject><subject>Satiety</subject><subject>Sensory neurons</subject><subject>Signal transduction</subject><subject>Substrates</subject><subject>Transcription</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kt1u1DAQhSMEoqXwBkhY4hJl8U_iOlwgrRZKIwqL-Lu1HGe86yq1U9vZss_ES-KlKYILrjye-eYc6WiK4inBC8JOyctLPwWnhsXoHSww5qekEfeKY9IwWnKK2f2_6qPiUYyXGNdMcP6wOKJMVJjT6rj42bo4DdahpU52pxJE9F1t1ICWxkAAl9BHmIJ3EbVOD1Nv3QalrY-Q_w5C3jh0PimnA6iIdlahO8WVilr1gJTrc01f5IEZph-vUJsierOPZnLZ0zuU2fbzF1q-X6MPVgO6sWmLzvcjhHGrNlajdQfRpv3j4oFRQ4Qn83tSfDt7-3V1Xl6s37Wr5UWpGatSKUyT86GMmg7XgmjeV7yvDfSYcKhr0rEGhNAgeq470mvGqVANw1jzhhHM2Unx7FZ3HHyUc85RHlIXDDd1nYnXMzF1V9DrnFNQgxyDvVJhL72y8t-Js1u58TvJskXDcRZ4PgsEfz1BTP-xqW4pHXyMAcwfB4J_c3db8nAEcj4C9gtXlqhv</recordid><startdate>20130626</startdate><enddate>20130626</enddate><creator>Iwasaki, Yusaku</creator><creator>Shimomura, Kenju</creator><creator>Kohno, Daisuke</creator><creator>Dezaki, Katsuya</creator><creator>Ayush, Enkh-Amar</creator><creator>Nakabayashi, Hajime</creator><creator>Kubota, Naoto</creator><creator>Kadowaki, Takashi</creator><creator>Kakei, Masafumi</creator><creator>Nakata, Masanori</creator><creator>Yada, Toshihiko</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130626</creationdate><title>Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity</title><author>Iwasaki, Yusaku ; Shimomura, Kenju ; Kohno, Daisuke ; Dezaki, Katsuya ; Ayush, Enkh-Amar ; Nakabayashi, Hajime ; Kubota, Naoto ; Kadowaki, Takashi ; Kakei, Masafumi ; Nakata, Masanori ; Yada, Toshihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8f9371232fb0581c6d46d5fed016e551b39e88ce8d6cb1dc3628a9300c6931063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Amphetamine</topic><topic>Amphetamines</topic><topic>Arcuate nucleus</topic><topic>Biology</topic><topic>Blood-brain barrier</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels (N-type)</topic><topic>Calcium influx</topic><topic>Cocaine</topic><topic>Cocaine- and amphetamine-regulated transcript protein</topic><topic>Depolarization</topic><topic>Diabetes</topic><topic>Enzyme inhibitors</topic><topic>Fibers</topic><topic>Food</topic><topic>Fura-2</topic><topic>Gastroenterology</topic><topic>Ghrelin</topic><topic>Glibenclamide</topic><topic>Glucose metabolism</topic><topic>Hypothalamus</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Lipid metabolism</topic><topic>Medicine</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Neurons</topic><topic>Neuroprotection</topic><topic>Nodose ganglion</topic><topic>Obesity</topic><topic>Pancreas</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Rodents</topic><topic>Satiety</topic><topic>Sensory neurons</topic><topic>Signal transduction</topic><topic>Substrates</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasaki, Yusaku</creatorcontrib><creatorcontrib>Shimomura, Kenju</creatorcontrib><creatorcontrib>Kohno, Daisuke</creatorcontrib><creatorcontrib>Dezaki, Katsuya</creatorcontrib><creatorcontrib>Ayush, Enkh-Amar</creatorcontrib><creatorcontrib>Nakabayashi, Hajime</creatorcontrib><creatorcontrib>Kubota, Naoto</creatorcontrib><creatorcontrib>Kadowaki, Takashi</creatorcontrib><creatorcontrib>Kakei, Masafumi</creatorcontrib><creatorcontrib>Nakata, Masanori</creatorcontrib><creatorcontrib>Yada, Toshihiko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasaki, Yusaku</au><au>Shimomura, Kenju</au><au>Kohno, Daisuke</au><au>Dezaki, Katsuya</au><au>Ayush, Enkh-Amar</au><au>Nakabayashi, Hajime</au><au>Kubota, Naoto</au><au>Kadowaki, Takashi</au><au>Kakei, Masafumi</au><au>Nakata, Masanori</au><au>Yada, Toshihiko</au><au>Tache, Yvette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity</atitle><jtitle>PloS one</jtitle><date>2013-06-26</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e67198</spage><pages>e67198-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Some of insulin’s functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10−12∼10−6 M) depolarized and increased cytosolic Ca2+ concentration ([Ca2+]i) in single NGNs. The insulin-induced [Ca2+]i increases were attenuated by L- and N-type Ca2+ channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10−7 M recruited a remarkably greater population of NGNs to [Ca2+]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca2+]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca2+ influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>23840624</pmid><doi>10.1371/journal.pone.0067198</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-06, Vol.8 (6), p.e67198
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1371830955
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Amphetamine
Amphetamines
Arcuate nucleus
Biology
Blood-brain barrier
Calcium (intracellular)
Calcium channels (N-type)
Calcium influx
Cocaine
Cocaine- and amphetamine-regulated transcript protein
Depolarization
Diabetes
Enzyme inhibitors
Fibers
Food
Fura-2
Gastroenterology
Ghrelin
Glibenclamide
Glucose metabolism
Hypothalamus
Insulin
Insulin resistance
Lipid metabolism
Medicine
Metabolic disorders
Metabolism
Mice
Neurons
Neuroprotection
Nodose ganglion
Obesity
Pancreas
Peptides
Physiology
Rodents
Satiety
Sensory neurons
Signal transduction
Substrates
Transcription
title Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20Activates%20Vagal%20Afferent%20Neurons%20Including%20those%20Innervating%20Pancreas%20via%20Insulin%20Cascade%20and%20Ca2+%20Influx:%20Its%20Dysfunction%20in%20IRS2-KO%20Mice%20with%20Hyperphagic%20Obesity&rft.jtitle=PloS%20one&rft.au=Iwasaki,%20Yusaku&rft.date=2013-06-26&rft.volume=8&rft.issue=6&rft.spage=e67198&rft.pages=e67198-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0067198&rft_dat=%3Cproquest_plos_%3E3006243261%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371830955&rft_id=info:pmid/23840624&rfr_iscdi=true