CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease

The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8(+) T cell responses that can potentially suppress pathogenic CD4(+)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-06, Vol.8 (6), p.e66772
Hauptverfasser: Tyler, Andrew F, Mendoza, Jason P, Firan, Mihail, Karandikar, Nitin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e66772
container_title PloS one
container_volume 8
creator Tyler, Andrew F
Mendoza, Jason P
Firan, Mihail
Karandikar, Nitin J
description The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8(+) T cell responses that can potentially suppress pathogenic CD4(+) T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8(+) T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8(+) T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4(+) regulatory T cells in an antigen-independent manner, required CD8(+) T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8(+) T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.
doi_str_mv 10.1371/journal.pone.0066772
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1370366581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a1fe190c1f2e47a78d5f41c1aadaf85e</doaj_id><sourcerecordid>3002028521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-eb6bba43ed524a6c547efbee3cd8431a4f2e2ed818689aa993502fd951837b23</originalsourceid><addsrcrecordid>eNp1Uktr3DAQNqWhebT_oLSCXlrCbvW2fAksu80DAoWy54qxNd5osa2NZBf239fJOiE55KRB872YmSz7zOiciZz93IYhdtDMd6HDOaVa5zl_l52wQvCZ5lS8f1EfZ6cpbSlVwmj9ITvmwlDFc3mS_V2uzPfzH2RNltg0iSwikj94P_iIjlyGSK4a6H2EFiNZVNhDj2R9hxF2e-I7shj64Nt26JCssN1j47sR3m3IyieEhB-zoxqahJ-m9yxbX_5aL69nt7-vbpaL21mluO5nWOqyBCnQKS5BV0rmWJeIonJGCgay5sjRGWa0KQCKQijKa1coZkRecnGWfT3I7pqQ7DSZZMc5UaG1MmxE3BwQLsDW7qJvIe5tAG8fP0LcWIi9rxq0wGpkBa3YaCpzyI1TtWQVA3BQG4Wj1sXkNpQtugq7PkLzSvR1p_N3dhP-WTGm10qNAt8mgRjuB0z9G5HlAVXFkFLE-tmB0Qcce2LZhxOw0wmMtC8v0z2TnnYu_gMRD6_X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370366581</pqid></control><display><type>article</type><title>CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tyler, Andrew F ; Mendoza, Jason P ; Firan, Mihail ; Karandikar, Nitin J</creator><contributor>Platten, Michael</contributor><creatorcontrib>Tyler, Andrew F ; Mendoza, Jason P ; Firan, Mihail ; Karandikar, Nitin J ; Platten, Michael</creatorcontrib><description>The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8(+) T cell responses that can potentially suppress pathogenic CD4(+) T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8(+) T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8(+) T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4(+) regulatory T cells in an antigen-independent manner, required CD8(+) T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8(+) T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0066772</identifier><identifier>PMID: 23805274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adoptive Transfer ; Amino acids ; Animal models ; Animals ; Antigens ; Autoimmune diseases ; Biology ; CD4 antigen ; CD4-Positive T-Lymphocytes - drug effects ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - metabolism ; CD8 antigen ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell growth ; Copolymer 1 ; Cytotoxicity, Immunologic - drug effects ; Demyelination ; Dendritic cells ; Dioxygenase ; Encephalomyelitis, Autoimmune, Experimental - etiology ; Encephalomyelitis, Autoimmune, Experimental - metabolism ; Encephalomyelitis, Autoimmune, Experimental - pathology ; Encephalomyelitis, Autoimmune, Experimental - therapy ; Experimental allergic encephalomyelitis ; Female ; Forkhead Transcription Factors - metabolism ; Glatiramer Acetate - pharmacology ; Histocompatibility Antigens Class I - metabolism ; Immunomodulation ; Immunoregulation ; Immunotherapy ; In vivo methods and tests ; Indoleamine-Pyrrole 2,3,-Dioxygenase - deficiency ; Indoleamine-Pyrrole 2,3,-Dioxygenase - genetics ; Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism ; Interferon ; Interferon-gamma - metabolism ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Medicine ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Multiple sclerosis ; Myelin-Oligodendrocyte Glycoprotein - toxicity ; Myeloid cells ; Nervous system ; Pathology ; Peptide Fragments - toxicity ; Peptides ; Perforin ; T cell receptors ; T-Lymphocytes, Regulatory - cytology ; T-Lymphocytes, Regulatory - metabolism ; Therapy ; γ-Interferon</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e66772</ispartof><rights>2013 Tyler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Tyler et al 2013 Tyler et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-eb6bba43ed524a6c547efbee3cd8431a4f2e2ed818689aa993502fd951837b23</citedby><cites>FETCH-LOGICAL-c526t-eb6bba43ed524a6c547efbee3cd8431a4f2e2ed818689aa993502fd951837b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23805274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Platten, Michael</contributor><creatorcontrib>Tyler, Andrew F</creatorcontrib><creatorcontrib>Mendoza, Jason P</creatorcontrib><creatorcontrib>Firan, Mihail</creatorcontrib><creatorcontrib>Karandikar, Nitin J</creatorcontrib><title>CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8(+) T cell responses that can potentially suppress pathogenic CD4(+) T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8(+) T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8(+) T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4(+) regulatory T cells in an antigen-independent manner, required CD8(+) T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8(+) T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.</description><subject>Adoptive Transfer</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens</subject><subject>Autoimmune diseases</subject><subject>Biology</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - drug effects</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell growth</subject><subject>Copolymer 1</subject><subject>Cytotoxicity, Immunologic - drug effects</subject><subject>Demyelination</subject><subject>Dendritic cells</subject><subject>Dioxygenase</subject><subject>Encephalomyelitis, Autoimmune, Experimental - etiology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - pathology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - therapy</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Female</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Glatiramer Acetate - pharmacology</subject><subject>Histocompatibility Antigens Class I - metabolism</subject><subject>Immunomodulation</subject><subject>Immunoregulation</subject><subject>Immunotherapy</subject><subject>In vivo methods and tests</subject><subject>Indoleamine-Pyrrole 2,3,-Dioxygenase - deficiency</subject><subject>Indoleamine-Pyrrole 2,3,-Dioxygenase - genetics</subject><subject>Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism</subject><subject>Interferon</subject><subject>Interferon-gamma - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Multiple sclerosis</subject><subject>Myelin-Oligodendrocyte Glycoprotein - toxicity</subject><subject>Myeloid cells</subject><subject>Nervous system</subject><subject>Pathology</subject><subject>Peptide Fragments - toxicity</subject><subject>Peptides</subject><subject>Perforin</subject><subject>T cell receptors</subject><subject>T-Lymphocytes, Regulatory - cytology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Therapy</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uktr3DAQNqWhebT_oLSCXlrCbvW2fAksu80DAoWy54qxNd5osa2NZBf239fJOiE55KRB872YmSz7zOiciZz93IYhdtDMd6HDOaVa5zl_l52wQvCZ5lS8f1EfZ6cpbSlVwmj9ITvmwlDFc3mS_V2uzPfzH2RNltg0iSwikj94P_iIjlyGSK4a6H2EFiNZVNhDj2R9hxF2e-I7shj64Nt26JCssN1j47sR3m3IyieEhB-zoxqahJ-m9yxbX_5aL69nt7-vbpaL21mluO5nWOqyBCnQKS5BV0rmWJeIonJGCgay5sjRGWa0KQCKQijKa1coZkRecnGWfT3I7pqQ7DSZZMc5UaG1MmxE3BwQLsDW7qJvIe5tAG8fP0LcWIi9rxq0wGpkBa3YaCpzyI1TtWQVA3BQG4Wj1sXkNpQtugq7PkLzSvR1p_N3dhP-WTGm10qNAt8mgRjuB0z9G5HlAVXFkFLE-tmB0Qcce2LZhxOw0wmMtC8v0z2TnnYu_gMRD6_X</recordid><startdate>20130621</startdate><enddate>20130621</enddate><creator>Tyler, Andrew F</creator><creator>Mendoza, Jason P</creator><creator>Firan, Mihail</creator><creator>Karandikar, Nitin J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130621</creationdate><title>CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease</title><author>Tyler, Andrew F ; Mendoza, Jason P ; Firan, Mihail ; Karandikar, Nitin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-eb6bba43ed524a6c547efbee3cd8431a4f2e2ed818689aa993502fd951837b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adoptive Transfer</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens</topic><topic>Autoimmune diseases</topic><topic>Biology</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - drug effects</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell growth</topic><topic>Copolymer 1</topic><topic>Cytotoxicity, Immunologic - drug effects</topic><topic>Demyelination</topic><topic>Dendritic cells</topic><topic>Dioxygenase</topic><topic>Encephalomyelitis, Autoimmune, Experimental - etiology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - pathology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - therapy</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Female</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Glatiramer Acetate - pharmacology</topic><topic>Histocompatibility Antigens Class I - metabolism</topic><topic>Immunomodulation</topic><topic>Immunoregulation</topic><topic>Immunotherapy</topic><topic>In vivo methods and tests</topic><topic>Indoleamine-Pyrrole 2,3,-Dioxygenase - deficiency</topic><topic>Indoleamine-Pyrrole 2,3,-Dioxygenase - genetics</topic><topic>Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism</topic><topic>Interferon</topic><topic>Interferon-gamma - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Multiple sclerosis</topic><topic>Myelin-Oligodendrocyte Glycoprotein - toxicity</topic><topic>Myeloid cells</topic><topic>Nervous system</topic><topic>Pathology</topic><topic>Peptide Fragments - toxicity</topic><topic>Peptides</topic><topic>Perforin</topic><topic>T cell receptors</topic><topic>T-Lymphocytes, Regulatory - cytology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Therapy</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyler, Andrew F</creatorcontrib><creatorcontrib>Mendoza, Jason P</creatorcontrib><creatorcontrib>Firan, Mihail</creatorcontrib><creatorcontrib>Karandikar, Nitin J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyler, Andrew F</au><au>Mendoza, Jason P</au><au>Firan, Mihail</au><au>Karandikar, Nitin J</au><au>Platten, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-06-21</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e66772</spage><pages>e66772-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8(+) T cell responses that can potentially suppress pathogenic CD4(+) T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8(+) T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8(+) T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4(+) regulatory T cells in an antigen-independent manner, required CD8(+) T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8(+) T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23805274</pmid><doi>10.1371/journal.pone.0066772</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-06, Vol.8 (6), p.e66772
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1370366581
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adoptive Transfer
Amino acids
Animal models
Animals
Antigens
Autoimmune diseases
Biology
CD4 antigen
CD4-Positive T-Lymphocytes - drug effects
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - metabolism
CD8 antigen
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell growth
Copolymer 1
Cytotoxicity, Immunologic - drug effects
Demyelination
Dendritic cells
Dioxygenase
Encephalomyelitis, Autoimmune, Experimental - etiology
Encephalomyelitis, Autoimmune, Experimental - metabolism
Encephalomyelitis, Autoimmune, Experimental - pathology
Encephalomyelitis, Autoimmune, Experimental - therapy
Experimental allergic encephalomyelitis
Female
Forkhead Transcription Factors - metabolism
Glatiramer Acetate - pharmacology
Histocompatibility Antigens Class I - metabolism
Immunomodulation
Immunoregulation
Immunotherapy
In vivo methods and tests
Indoleamine-Pyrrole 2,3,-Dioxygenase - deficiency
Indoleamine-Pyrrole 2,3,-Dioxygenase - genetics
Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism
Interferon
Interferon-gamma - metabolism
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Medicine
Mice
Mice, Inbred C57BL
Mice, Knockout
Multiple sclerosis
Myelin-Oligodendrocyte Glycoprotein - toxicity
Myeloid cells
Nervous system
Pathology
Peptide Fragments - toxicity
Peptides
Perforin
T cell receptors
T-Lymphocytes, Regulatory - cytology
T-Lymphocytes, Regulatory - metabolism
Therapy
γ-Interferon
title CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD8(+)%20T%20Cells%20Are%20Required%20For%20Glatiramer%20Acetate%20Therapy%20in%20Autoimmune%20Demyelinating%20Disease&rft.jtitle=PloS%20one&rft.au=Tyler,%20Andrew%20F&rft.date=2013-06-21&rft.volume=8&rft.issue=6&rft.spage=e66772&rft.pages=e66772-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0066772&rft_dat=%3Cproquest_plos_%3E3002028521%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370366581&rft_id=info:pmid/23805274&rft_doaj_id=oai_doaj_org_article_a1fe190c1f2e47a78d5f41c1aadaf85e&rfr_iscdi=true