CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template
Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+)-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR). Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-06, Vol.8 (6), p.e66247 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e66247 |
container_title | PloS one |
container_volume | 8 |
creator | Moreau, Christelle Liu, Qun Graeff, Richard Wagner, Gerd K Thomas, Mark P Swarbrick, Joanna M Shuto, Satoshi Lee, Hon Cheung Hao, Quan Potter, Barry V L |
description | Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+)-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR). Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used to reproduce the crystallographic binding mode of cyclic inosine 5'-diphosphoribose (N1-cIDPR) with CD38, revealing an exploitable pocket and predicting the potential to introduce an extra hydrogen bond interaction with Asp-155. The purine C-8 position of N1-cIDPR (IC50 276 µM) was extended with an amino or diaminobutane group and the 8-modified compounds were evaluated against CD38-catalyzed cADPR hydrolysis. Crystallography of an 8-amino N1-cIDPR:CD38 complex confirmed the predicted interaction with Asp-155, together with a second H-bond from a realigned Glu-146, rationalizing the improved inhibition (IC50 56 µM). Crystallography of a complex of cyclic ADP-carbocyclic ribose (cADPcR, IC50 129 µM) with CD38 illustrated that Glu-146 hydrogen bonds with the ligand N6-amino group. Both 8-amino N1-cIDPR and cADPcR bind deep in the active site reaching the catalytic residue Glu-226, and mimicking the likely location of cADPR during catalysis. Substantial overlap of the N1-cIDPR "northern" ribose monophosphate and the cADPcR carbocyclic ribose monophosphate regions suggests that this area is crucial for inhibitor design, leading to a new compound series of N1-inosine 5'-monophosphates (N1-IMPs). These small fragments inhibit hydrolysis of cADPR more efficiently than the parent cyclic compounds, with the best in the series demonstrating potent inhibition (IC50 = 7.6 µM). The lower molecular weight and relative simplicity of these compounds compared to cADPR make them attractive as a starting point for further inhibitor design. |
doi_str_mv | 10.1371/journal.pone.0066247 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1369824750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478210393</galeid><doaj_id>oai_doaj_org_article_77d1703fdf0f48198e3453cdbaee4027</doaj_id><sourcerecordid>A478210393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d76abcbb905d57fef802c7562cfe3e567359a7f15cf9e19e1057506ddd630b053</originalsourceid><addsrcrecordid>eNqNk1uP1CAUxxujcdfVb2C0iYmXh45QCrQvJuuMl0k2brIXX5HS05ZJp1Sgxv32Mk53MzX7YCABDr_zh3PgRNFzjBaYcPx-Y0bby24xmB4WCDGWZvxBdIwLkiYsReThwfwoeuLcBiFKcsYeR0cpyTOUEXQc_ViuSB5fejsqP1pIPkoHVbzuW11qb2y8AqebPr52um9i30L8DSfLG9VpFSATrBDTN8lKD61xQys9xBe6NA7iK9gOXVg_jR7VsnPwbBpPouvPn66WX5Oz8y_r5elZoliR-qTiTJaqLAtEK8prqHOUKk5ZqmogQBkntJC8xlTVBeDQEeUUsaqqGEFlCOwkernXHTrjxJQcJzBhRR4yQ1Eg1nuiMnIjBqu30t4II7X4azC2EdJ6rToQnFeYI1JXNaqzHBc5kIwSVZUSIEMpD1ofptPGcguVgt5b2c1E5zu9bkVjfgnCcsaL3XXfTgLW_BzBebHVTkHXyR7MGO7NC8wJKWgR0Ff_oPdHN1GNDAHovjbhXLUTFacZz1OMSEECtbiHCq2CrVbhJ9U62GcO72YOgfHw2zdydE6sLy_-nz3_PmdfH7AtyM63znSj16Z3czDbg8oa5yzUd0nGSOwK4TYbYlcIYiqE4Pbi8IHunG5_PvkDz3QBJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369824750</pqid></control><display><type>article</type><title>CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moreau, Christelle ; Liu, Qun ; Graeff, Richard ; Wagner, Gerd K ; Thomas, Mark P ; Swarbrick, Joanna M ; Shuto, Satoshi ; Lee, Hon Cheung ; Hao, Quan ; Potter, Barry V L</creator><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Moreau, Christelle ; Liu, Qun ; Graeff, Richard ; Wagner, Gerd K ; Thomas, Mark P ; Swarbrick, Joanna M ; Shuto, Satoshi ; Lee, Hon Cheung ; Hao, Quan ; Potter, Barry V L ; Permyakov, Eugene A.</creatorcontrib><description>Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+)-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR). Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used to reproduce the crystallographic binding mode of cyclic inosine 5'-diphosphoribose (N1-cIDPR) with CD38, revealing an exploitable pocket and predicting the potential to introduce an extra hydrogen bond interaction with Asp-155. The purine C-8 position of N1-cIDPR (IC50 276 µM) was extended with an amino or diaminobutane group and the 8-modified compounds were evaluated against CD38-catalyzed cADPR hydrolysis. Crystallography of an 8-amino N1-cIDPR:CD38 complex confirmed the predicted interaction with Asp-155, together with a second H-bond from a realigned Glu-146, rationalizing the improved inhibition (IC50 56 µM). Crystallography of a complex of cyclic ADP-carbocyclic ribose (cADPcR, IC50 129 µM) with CD38 illustrated that Glu-146 hydrogen bonds with the ligand N6-amino group. Both 8-amino N1-cIDPR and cADPcR bind deep in the active site reaching the catalytic residue Glu-226, and mimicking the likely location of cADPR during catalysis. Substantial overlap of the N1-cIDPR "northern" ribose monophosphate and the cADPcR carbocyclic ribose monophosphate regions suggests that this area is crucial for inhibitor design, leading to a new compound series of N1-inosine 5'-monophosphates (N1-IMPs). These small fragments inhibit hydrolysis of cADPR more efficiently than the parent cyclic compounds, with the best in the series demonstrating potent inhibition (IC50 = 7.6 µM). The lower molecular weight and relative simplicity of these compounds compared to cADPR make them attractive as a starting point for further inhibitor design.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0066247</identifier><identifier>PMID: 23840430</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine ; Adenosine diphosphate ; ADP-ribosyl Cyclase 1 - antagonists & inhibitors ; ADP-ribosyl Cyclase 1 - chemistry ; Aplysia californica ; Biology ; Calcium metabolism ; Calcium mobilization ; Catalysis ; Catalytic Domain ; CD38 antigen ; Chemical bonds ; Chemistry ; Computer Science ; Crystallography ; Crystallography, X-Ray ; Cyclic ADP-ribose ; Cyclic ADP-Ribose - analogs & derivatives ; Cyclic ADP-Ribose - chemistry ; Cyclic compounds ; Design ; Drug Design ; Enzyme Inhibitors - chemical synthesis ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Genetic algorithms ; Hydrogen ; Hydrogen Bonding ; Hydrogen bonds ; Hydrogen ion concentration ; Hydrolysis ; Inhibition ; Inhibitors ; Inosine Diphosphate ; Laboratories ; Ligands ; Metabolism ; Mimicry ; Models, Molecular ; Molecular docking ; Molecular Docking Simulation ; Molecular structure ; Molecular Weight ; Monosaccharides ; Pharmaceutical sciences ; Pharmacology ; Pharmacy ; Physiological aspects ; Physiology ; Protein Binding ; Proteins ; Ribose ; Structure-Activity Relationship</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e66247</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Moreau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Moreau et al 2013 Moreau et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d76abcbb905d57fef802c7562cfe3e567359a7f15cf9e19e1057506ddd630b053</citedby><cites>FETCH-LOGICAL-c692t-d76abcbb905d57fef802c7562cfe3e567359a7f15cf9e19e1057506ddd630b053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686795/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686795/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23840430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Moreau, Christelle</creatorcontrib><creatorcontrib>Liu, Qun</creatorcontrib><creatorcontrib>Graeff, Richard</creatorcontrib><creatorcontrib>Wagner, Gerd K</creatorcontrib><creatorcontrib>Thomas, Mark P</creatorcontrib><creatorcontrib>Swarbrick, Joanna M</creatorcontrib><creatorcontrib>Shuto, Satoshi</creatorcontrib><creatorcontrib>Lee, Hon Cheung</creatorcontrib><creatorcontrib>Hao, Quan</creatorcontrib><creatorcontrib>Potter, Barry V L</creatorcontrib><title>CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+)-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR). Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used to reproduce the crystallographic binding mode of cyclic inosine 5'-diphosphoribose (N1-cIDPR) with CD38, revealing an exploitable pocket and predicting the potential to introduce an extra hydrogen bond interaction with Asp-155. The purine C-8 position of N1-cIDPR (IC50 276 µM) was extended with an amino or diaminobutane group and the 8-modified compounds were evaluated against CD38-catalyzed cADPR hydrolysis. Crystallography of an 8-amino N1-cIDPR:CD38 complex confirmed the predicted interaction with Asp-155, together with a second H-bond from a realigned Glu-146, rationalizing the improved inhibition (IC50 56 µM). Crystallography of a complex of cyclic ADP-carbocyclic ribose (cADPcR, IC50 129 µM) with CD38 illustrated that Glu-146 hydrogen bonds with the ligand N6-amino group. Both 8-amino N1-cIDPR and cADPcR bind deep in the active site reaching the catalytic residue Glu-226, and mimicking the likely location of cADPR during catalysis. Substantial overlap of the N1-cIDPR "northern" ribose monophosphate and the cADPcR carbocyclic ribose monophosphate regions suggests that this area is crucial for inhibitor design, leading to a new compound series of N1-inosine 5'-monophosphates (N1-IMPs). These small fragments inhibit hydrolysis of cADPR more efficiently than the parent cyclic compounds, with the best in the series demonstrating potent inhibition (IC50 = 7.6 µM). The lower molecular weight and relative simplicity of these compounds compared to cADPR make them attractive as a starting point for further inhibitor design.</description><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>ADP-ribosyl Cyclase 1 - antagonists & inhibitors</subject><subject>ADP-ribosyl Cyclase 1 - chemistry</subject><subject>Aplysia californica</subject><subject>Biology</subject><subject>Calcium metabolism</subject><subject>Calcium mobilization</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>CD38 antigen</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Computer Science</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic ADP-ribose</subject><subject>Cyclic ADP-Ribose - analogs & derivatives</subject><subject>Cyclic ADP-Ribose - chemistry</subject><subject>Cyclic compounds</subject><subject>Design</subject><subject>Drug Design</subject><subject>Enzyme Inhibitors - chemical synthesis</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Genetic algorithms</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen ion concentration</subject><subject>Hydrolysis</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>Inosine Diphosphate</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Metabolism</subject><subject>Mimicry</subject><subject>Models, Molecular</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular structure</subject><subject>Molecular Weight</subject><subject>Monosaccharides</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Pharmacy</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Ribose</subject><subject>Structure-Activity Relationship</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uP1CAUxxujcdfVb2C0iYmXh45QCrQvJuuMl0k2brIXX5HS05ZJp1Sgxv32Mk53MzX7YCABDr_zh3PgRNFzjBaYcPx-Y0bby24xmB4WCDGWZvxBdIwLkiYsReThwfwoeuLcBiFKcsYeR0cpyTOUEXQc_ViuSB5fejsqP1pIPkoHVbzuW11qb2y8AqebPr52um9i30L8DSfLG9VpFSATrBDTN8lKD61xQys9xBe6NA7iK9gOXVg_jR7VsnPwbBpPouvPn66WX5Oz8y_r5elZoliR-qTiTJaqLAtEK8prqHOUKk5ZqmogQBkntJC8xlTVBeDQEeUUsaqqGEFlCOwkernXHTrjxJQcJzBhRR4yQ1Eg1nuiMnIjBqu30t4II7X4azC2EdJ6rToQnFeYI1JXNaqzHBc5kIwSVZUSIEMpD1ofptPGcguVgt5b2c1E5zu9bkVjfgnCcsaL3XXfTgLW_BzBebHVTkHXyR7MGO7NC8wJKWgR0Ff_oPdHN1GNDAHovjbhXLUTFacZz1OMSEECtbiHCq2CrVbhJ9U62GcO72YOgfHw2zdydE6sLy_-nz3_PmdfH7AtyM63znSj16Z3czDbg8oa5yzUd0nGSOwK4TYbYlcIYiqE4Pbi8IHunG5_PvkDz3QBJA</recordid><startdate>20130619</startdate><enddate>20130619</enddate><creator>Moreau, Christelle</creator><creator>Liu, Qun</creator><creator>Graeff, Richard</creator><creator>Wagner, Gerd K</creator><creator>Thomas, Mark P</creator><creator>Swarbrick, Joanna M</creator><creator>Shuto, Satoshi</creator><creator>Lee, Hon Cheung</creator><creator>Hao, Quan</creator><creator>Potter, Barry V L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130619</creationdate><title>CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template</title><author>Moreau, Christelle ; Liu, Qun ; Graeff, Richard ; Wagner, Gerd K ; Thomas, Mark P ; Swarbrick, Joanna M ; Shuto, Satoshi ; Lee, Hon Cheung ; Hao, Quan ; Potter, Barry V L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d76abcbb905d57fef802c7562cfe3e567359a7f15cf9e19e1057506ddd630b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>ADP-ribosyl Cyclase 1 - antagonists & inhibitors</topic><topic>ADP-ribosyl Cyclase 1 - chemistry</topic><topic>Aplysia californica</topic><topic>Biology</topic><topic>Calcium metabolism</topic><topic>Calcium mobilization</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>CD38 antigen</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Computer Science</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic ADP-ribose</topic><topic>Cyclic ADP-Ribose - analogs & derivatives</topic><topic>Cyclic ADP-Ribose - chemistry</topic><topic>Cyclic compounds</topic><topic>Design</topic><topic>Drug Design</topic><topic>Enzyme Inhibitors - chemical synthesis</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Genetic algorithms</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen ion concentration</topic><topic>Hydrolysis</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>Inosine Diphosphate</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Metabolism</topic><topic>Mimicry</topic><topic>Models, Molecular</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular structure</topic><topic>Molecular Weight</topic><topic>Monosaccharides</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Pharmacy</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Ribose</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreau, Christelle</creatorcontrib><creatorcontrib>Liu, Qun</creatorcontrib><creatorcontrib>Graeff, Richard</creatorcontrib><creatorcontrib>Wagner, Gerd K</creatorcontrib><creatorcontrib>Thomas, Mark P</creatorcontrib><creatorcontrib>Swarbrick, Joanna M</creatorcontrib><creatorcontrib>Shuto, Satoshi</creatorcontrib><creatorcontrib>Lee, Hon Cheung</creatorcontrib><creatorcontrib>Hao, Quan</creatorcontrib><creatorcontrib>Potter, Barry V L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreau, Christelle</au><au>Liu, Qun</au><au>Graeff, Richard</au><au>Wagner, Gerd K</au><au>Thomas, Mark P</au><au>Swarbrick, Joanna M</au><au>Shuto, Satoshi</au><au>Lee, Hon Cheung</au><au>Hao, Quan</au><au>Potter, Barry V L</au><au>Permyakov, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-06-19</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e66247</spage><pages>e66247-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+)-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR). Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used to reproduce the crystallographic binding mode of cyclic inosine 5'-diphosphoribose (N1-cIDPR) with CD38, revealing an exploitable pocket and predicting the potential to introduce an extra hydrogen bond interaction with Asp-155. The purine C-8 position of N1-cIDPR (IC50 276 µM) was extended with an amino or diaminobutane group and the 8-modified compounds were evaluated against CD38-catalyzed cADPR hydrolysis. Crystallography of an 8-amino N1-cIDPR:CD38 complex confirmed the predicted interaction with Asp-155, together with a second H-bond from a realigned Glu-146, rationalizing the improved inhibition (IC50 56 µM). Crystallography of a complex of cyclic ADP-carbocyclic ribose (cADPcR, IC50 129 µM) with CD38 illustrated that Glu-146 hydrogen bonds with the ligand N6-amino group. Both 8-amino N1-cIDPR and cADPcR bind deep in the active site reaching the catalytic residue Glu-226, and mimicking the likely location of cADPR during catalysis. Substantial overlap of the N1-cIDPR "northern" ribose monophosphate and the cADPcR carbocyclic ribose monophosphate regions suggests that this area is crucial for inhibitor design, leading to a new compound series of N1-inosine 5'-monophosphates (N1-IMPs). These small fragments inhibit hydrolysis of cADPR more efficiently than the parent cyclic compounds, with the best in the series demonstrating potent inhibition (IC50 = 7.6 µM). The lower molecular weight and relative simplicity of these compounds compared to cADPR make them attractive as a starting point for further inhibitor design.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23840430</pmid><doi>10.1371/journal.pone.0066247</doi><tpages>e66247</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-06, Vol.8 (6), p.e66247 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1369824750 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Adenosine diphosphate ADP-ribosyl Cyclase 1 - antagonists & inhibitors ADP-ribosyl Cyclase 1 - chemistry Aplysia californica Biology Calcium metabolism Calcium mobilization Catalysis Catalytic Domain CD38 antigen Chemical bonds Chemistry Computer Science Crystallography Crystallography, X-Ray Cyclic ADP-ribose Cyclic ADP-Ribose - analogs & derivatives Cyclic ADP-Ribose - chemistry Cyclic compounds Design Drug Design Enzyme Inhibitors - chemical synthesis Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Genetic algorithms Hydrogen Hydrogen Bonding Hydrogen bonds Hydrogen ion concentration Hydrolysis Inhibition Inhibitors Inosine Diphosphate Laboratories Ligands Metabolism Mimicry Models, Molecular Molecular docking Molecular Docking Simulation Molecular structure Molecular Weight Monosaccharides Pharmaceutical sciences Pharmacology Pharmacy Physiological aspects Physiology Protein Binding Proteins Ribose Structure-Activity Relationship |
title | CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD38%20Structure-Based%20Inhibitor%20Design%20Using%20the%20N1-Cyclic%20Inosine%205'-Diphosphate%20Ribose%20Template&rft.jtitle=PloS%20one&rft.au=Moreau,%20Christelle&rft.date=2013-06-19&rft.volume=8&rft.issue=6&rft.spage=e66247&rft.pages=e66247-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0066247&rft_dat=%3Cgale_plos_%3EA478210393%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369824750&rft_id=info:pmid/23840430&rft_galeid=A478210393&rft_doaj_id=oai_doaj_org_article_77d1703fdf0f48198e3453cdbaee4027&rfr_iscdi=true |