Intracellular Neural Recording with Pure Carbon Nanotube Probes

The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-06, Vol.8 (6), p.e65715
Hauptverfasser: Yoon, Inho, Hamaguchi, Kosuke, Borzenets, Ivan V, Finkelstein, Gleb, Mooney, Richard, Donald, Bruce R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e65715
container_title PloS one
container_volume 8
creator Yoon, Inho
Hamaguchi, Kosuke
Borzenets, Ivan V
Finkelstein, Gleb
Mooney, Richard
Donald, Bruce R
description The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.
doi_str_mv 10.1371/journal.pone.0065715
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1369824713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478210469</galeid><doaj_id>oai_doaj_org_article_5796954474684d2f927d5feb36737da4</doaj_id><sourcerecordid>A478210469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1e9b29d8a7b8f7a82a1052ad6a7a83b2894613fe983128555099a5526ac025393</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7rr6DUQLguDDjLlfXpRl8DKw7C7r5TWctmknQ6YZk9bLt7d1ussUFCQPSU5-_39OTk6WPcVoianEr7ehjy345T60domQ4BLze9kp1pQsBEH0_tH6JHuU0hYhTpUQD7MTQhVDlMvT7O267SKU1vveQ8wvbR_B5ze2DLFybZP_cN0mv-6jzVcQi9Dml9CGri9sfh1DYdPj7EENPtkn03yWfXn_7vPq4-Li6sN6dX6xKIUm3QJbXRBdKZCFqiUoAhhxApWAYUMLojQTmNZWK4qJ4pwjrYFzIqBEhFNNz7LnB9-9D8lMb08GU6EVYRLTgVgfiCrA1uyj20H8ZQI48ycQYmMgdq701nCpheaMSSYUq0itiax4bQsqJJUVsMHrzXRbX-xsVdqxSH5mOj9p3cY04buhQgkpx3RfTAYxfOtt6v6R8kQ1MGTl2jqMf7FzqTTnTCqCEROj1_Iv1DAqu3Pl8Pu1G-IzwauZYGA6-7NroE_JrD_d_D979XXOvjxiNxZ8t0nB950LbZqD7ACWMaQUbX1XOYzM2Ly31TBj85qpeQfZs-Oq34luu5X-BsIE5xU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369824713</pqid></control><display><type>article</type><title>Intracellular Neural Recording with Pure Carbon Nanotube Probes</title><source>MEDLINE</source><source>Public Library of Science (PLoS)</source><source>TestCollectionTL3OpenAccess</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yoon, Inho ; Hamaguchi, Kosuke ; Borzenets, Ivan V ; Finkelstein, Gleb ; Mooney, Richard ; Donald, Bruce R</creator><contributor>Giugliano, Michele</contributor><creatorcontrib>Yoon, Inho ; Hamaguchi, Kosuke ; Borzenets, Ivan V ; Finkelstein, Gleb ; Mooney, Richard ; Donald, Bruce R ; Giugliano, Michele</creatorcontrib><description>The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0065715</identifier><identifier>PMID: 23840357</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Annealing ; Arrays ; Assembling ; Biology ; Biomedical engineering ; Brain ; Carbon ; Carbon nanotubes ; Coated electrodes ; Computational neuroscience ; Computer engineering ; Electric properties ; Electrical properties ; Electrochemistry ; Electrodes ; Electrophysiological recording ; Engineering ; Equipment Design ; Equipment Failure Analysis ; Fabrication ; Glass electrodes ; In vivo methods and tests ; Information processing ; Intracellular ; Investigations ; Materials Science ; Mice ; Microelectrodes ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotubes ; Nanotubes, Carbon ; Nervous system ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Physics ; Recording ; Spectrum analysis ; Substrates ; Synapses - physiology ; Vertebrates - physiology ; Voltammetry ; Wire</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e65715</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Yoon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Yoon et al 2013 Yoon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1e9b29d8a7b8f7a82a1052ad6a7a83b2894613fe983128555099a5526ac025393</citedby><cites>FETCH-LOGICAL-c692t-1e9b29d8a7b8f7a82a1052ad6a7a83b2894613fe983128555099a5526ac025393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686779/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686779/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27904,27905,53771,53773,79348,79349</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23840357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Giugliano, Michele</contributor><creatorcontrib>Yoon, Inho</creatorcontrib><creatorcontrib>Hamaguchi, Kosuke</creatorcontrib><creatorcontrib>Borzenets, Ivan V</creatorcontrib><creatorcontrib>Finkelstein, Gleb</creatorcontrib><creatorcontrib>Mooney, Richard</creatorcontrib><creatorcontrib>Donald, Bruce R</creatorcontrib><title>Intracellular Neural Recording with Pure Carbon Nanotube Probes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.</description><subject>Animals</subject><subject>Annealing</subject><subject>Arrays</subject><subject>Assembling</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Brain</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Coated electrodes</subject><subject>Computational neuroscience</subject><subject>Computer engineering</subject><subject>Electric properties</subject><subject>Electrical properties</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrophysiological recording</subject><subject>Engineering</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fabrication</subject><subject>Glass electrodes</subject><subject>In vivo methods and tests</subject><subject>Information processing</subject><subject>Intracellular</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Mice</subject><subject>Microelectrodes</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Physics</subject><subject>Recording</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Synapses - physiology</subject><subject>Vertebrates - physiology</subject><subject>Voltammetry</subject><subject>Wire</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7rr6DUQLguDDjLlfXpRl8DKw7C7r5TWctmknQ6YZk9bLt7d1ussUFCQPSU5-_39OTk6WPcVoianEr7ehjy345T60domQ4BLze9kp1pQsBEH0_tH6JHuU0hYhTpUQD7MTQhVDlMvT7O267SKU1vveQ8wvbR_B5ze2DLFybZP_cN0mv-6jzVcQi9Dml9CGri9sfh1DYdPj7EENPtkn03yWfXn_7vPq4-Li6sN6dX6xKIUm3QJbXRBdKZCFqiUoAhhxApWAYUMLojQTmNZWK4qJ4pwjrYFzIqBEhFNNz7LnB9-9D8lMb08GU6EVYRLTgVgfiCrA1uyj20H8ZQI48ycQYmMgdq701nCpheaMSSYUq0itiax4bQsqJJUVsMHrzXRbX-xsVdqxSH5mOj9p3cY04buhQgkpx3RfTAYxfOtt6v6R8kQ1MGTl2jqMf7FzqTTnTCqCEROj1_Iv1DAqu3Pl8Pu1G-IzwauZYGA6-7NroE_JrD_d_D979XXOvjxiNxZ8t0nB950LbZqD7ACWMaQUbX1XOYzM2Ly31TBj85qpeQfZs-Oq34luu5X-BsIE5xU</recordid><startdate>20130619</startdate><enddate>20130619</enddate><creator>Yoon, Inho</creator><creator>Hamaguchi, Kosuke</creator><creator>Borzenets, Ivan V</creator><creator>Finkelstein, Gleb</creator><creator>Mooney, Richard</creator><creator>Donald, Bruce R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130619</creationdate><title>Intracellular Neural Recording with Pure Carbon Nanotube Probes</title><author>Yoon, Inho ; Hamaguchi, Kosuke ; Borzenets, Ivan V ; Finkelstein, Gleb ; Mooney, Richard ; Donald, Bruce R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1e9b29d8a7b8f7a82a1052ad6a7a83b2894613fe983128555099a5526ac025393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Annealing</topic><topic>Arrays</topic><topic>Assembling</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Brain</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Coated electrodes</topic><topic>Computational neuroscience</topic><topic>Computer engineering</topic><topic>Electric properties</topic><topic>Electrical properties</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrophysiological recording</topic><topic>Engineering</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fabrication</topic><topic>Glass electrodes</topic><topic>In vivo methods and tests</topic><topic>Information processing</topic><topic>Intracellular</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Mice</topic><topic>Microelectrodes</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Physics</topic><topic>Recording</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Synapses - physiology</topic><topic>Vertebrates - physiology</topic><topic>Voltammetry</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Inho</creatorcontrib><creatorcontrib>Hamaguchi, Kosuke</creatorcontrib><creatorcontrib>Borzenets, Ivan V</creatorcontrib><creatorcontrib>Finkelstein, Gleb</creatorcontrib><creatorcontrib>Mooney, Richard</creatorcontrib><creatorcontrib>Donald, Bruce R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Inho</au><au>Hamaguchi, Kosuke</au><au>Borzenets, Ivan V</au><au>Finkelstein, Gleb</au><au>Mooney, Richard</au><au>Donald, Bruce R</au><au>Giugliano, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular Neural Recording with Pure Carbon Nanotube Probes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-06-19</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e65715</spage><pages>e65715-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23840357</pmid><doi>10.1371/journal.pone.0065715</doi><tpages>e65715</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-06, Vol.8 (6), p.e65715
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1369824713
source MEDLINE; Public Library of Science (PLoS); TestCollectionTL3OpenAccess; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Annealing
Arrays
Assembling
Biology
Biomedical engineering
Brain
Carbon
Carbon nanotubes
Coated electrodes
Computational neuroscience
Computer engineering
Electric properties
Electrical properties
Electrochemistry
Electrodes
Electrophysiological recording
Engineering
Equipment Design
Equipment Failure Analysis
Fabrication
Glass electrodes
In vivo methods and tests
Information processing
Intracellular
Investigations
Materials Science
Mice
Microelectrodes
Nanotechnology
Nanotechnology - instrumentation
Nanotubes
Nanotubes, Carbon
Nervous system
Neurobiology
Neurons
Neurons - physiology
Neurosciences
Physics
Recording
Spectrum analysis
Substrates
Synapses - physiology
Vertebrates - physiology
Voltammetry
Wire
title Intracellular Neural Recording with Pure Carbon Nanotube Probes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20Neural%20Recording%20with%20Pure%20Carbon%20Nanotube%20Probes&rft.jtitle=PloS%20one&rft.au=Yoon,%20Inho&rft.date=2013-06-19&rft.volume=8&rft.issue=6&rft.spage=e65715&rft.pages=e65715-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0065715&rft_dat=%3Cgale_plos_%3EA478210469%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369824713&rft_id=info:pmid/23840357&rft_galeid=A478210469&rft_doaj_id=oai_doaj_org_article_5796954474684d2f927d5feb36737da4&rfr_iscdi=true