Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model

This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-06, Vol.8 (6), p.e65591-e65591
Hauptverfasser: Tang, Xiaoying, Oishi, Kenichi, Faria, Andreia V, Hillis, Argye E, Albert, Marilyn S, Mori, Susumu, Miller, Michael I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e65591
container_issue 6
container_start_page e65591
container_title PloS one
container_volume 8
creator Tang, Xiaoying
Oishi, Kenichi
Faria, Andreia V
Hillis, Argye E
Albert, Marilyn S
Mori, Susumu
Miller, Michael I
description This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in the brain generated via manual delineation of the structures of interest. We focus on maximum a posteriori estimation of high dimensional segmentations of MR within the class of generative models representing the observed MRI as a conditionally Gaussian random field, conditioned on the atlas charts and the diffeomorphic change of coordinates of each chart that generates it. The charts and their diffeomorphic correspondences are unknown and viewed as latent or hidden variables. We demonstrate that the expectation-maximization (EM) algorithm arises naturally, yielding the likelihood-fusion equation which the a posteriori estimator of the segmentation labels maximizes. The likelihoods being fused are modeled as conditionally Gaussian random fields with mean fields a function of each atlas chart under its diffeomorphic change of coordinates onto the target. The conditional-mean in the EM algorithm specifies the convex weights with which the chart-specific likelihoods are fused. The multiple atlases with the associated convex weights imply that the posterior distribution is a multi-modal representation of the measured MRI. Segmentation results for subcortical and ventricular structures of subjects, within populations of demented subjects, are demonstrated, including the use of multiple atlases across multiple diseased groups.
doi_str_mv 10.1371/journal.pone.0065591
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1369309662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478225241</galeid><doaj_id>oai_doaj_org_article_ac57048decb24e1381337bcdb0104d91</doaj_id><sourcerecordid>A478225241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-a02d6ce75fd8a6934f971daf09fbd0169b9ac3acff485297cd319e942d68c21b3</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxSMEYmPwDRBEQkLw0OI_iRO_IJVpQKVNRdvg1bqxndaTExfbQezb49JsatAeiB8SXf_Oce71ybKXGM0xrfCHGzf4Hux863o9R4iVJcePsmPMKZkxgujjg--j7FkINwiVtGbsaXZEaE0KXPLj7PoT3OpgoM-_gYdOR-3zsxBNB9G4Pode5Vd63ek-7gumz-NG5xeDjWa2iBZCfpkg1-Ur35iYXzil7fPsSQs26Bfj-yT7_vns-vTr7Hz1ZXm6OJ_JqqzjDBBRTOqqbFUNjNOi5RVW0CLeNgphxhsOkoJs26IuCa-kophrXiRVLQlu6En2eu-7tS6IcSBBYJrMEGeMJGK5J5SDG7H1qS9_KxwY8bfg_FqAj0ZaLUCWFSpqpWVDCo1pjSmtGqkahFGhOE5eH8fThqbTSqaZeLAT0-lObzZi7X4Jyur0sGTwbjTw7uegQxSdCVJbC712Q_rviuMKc1QUCX3zD_pwdyO1htSA6VuXzpU7U7EoqpqQMt1youYPUGkp3RmZ0tOaVJ8I3k8EiYn6d1zDEIJYXl3-P7v6MWXfHrAbDTZugrPDLlhhChZ7UHoXgtft_ZAxErvw301D7MIvxvAn2avDC7oX3aWd_gH39P5t</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369309662</pqid></control><display><type>article</type><title>Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tang, Xiaoying ; Oishi, Kenichi ; Faria, Andreia V ; Hillis, Argye E ; Albert, Marilyn S ; Mori, Susumu ; Miller, Michael I</creator><creatorcontrib>Tang, Xiaoying ; Oishi, Kenichi ; Faria, Andreia V ; Hillis, Argye E ; Albert, Marilyn S ; Mori, Susumu ; Miller, Michael I</creatorcontrib><description>This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in the brain generated via manual delineation of the structures of interest. We focus on maximum a posteriori estimation of high dimensional segmentations of MR within the class of generative models representing the observed MRI as a conditionally Gaussian random field, conditioned on the atlas charts and the diffeomorphic change of coordinates of each chart that generates it. The charts and their diffeomorphic correspondences are unknown and viewed as latent or hidden variables. We demonstrate that the expectation-maximization (EM) algorithm arises naturally, yielding the likelihood-fusion equation which the a posteriori estimator of the segmentation labels maximizes. The likelihoods being fused are modeled as conditionally Gaussian random fields with mean fields a function of each atlas chart under its diffeomorphic change of coordinates onto the target. The conditional-mean in the EM algorithm specifies the convex weights with which the chart-specific likelihoods are fused. The multiple atlases with the associated convex weights imply that the posterior distribution is a multi-modal representation of the measured MRI. Segmentation results for subcortical and ventricular structures of subjects, within populations of demented subjects, are demonstrated, including the use of multiple atlases across multiple diseased groups.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0065591</identifier><identifier>PMID: 23824159</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alzheimer's disease ; Analysis ; Anatomy ; Automation ; Bayes Theorem ; Bayesian analysis ; Biology ; Brain ; Brain architecture ; Brain research ; Charts ; Computational neuroscience ; Computer Science ; Conditioning ; Coordinate transformations ; Engineering ; Fields (mathematics) ; Humans ; Image processing ; Image segmentation ; Likelihood Functions ; Magnetic resonance ; Magnetic Resonance Imaging ; Mathematical models ; Mathematics ; Medical imaging ; Medicine ; Models, Anatomic ; Orbit - anatomy &amp; histology ; Parameter estimation ; Parameters ; Probability ; Resonance ; Ventricle</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e65591-e65591</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Tang et al 2013 Tang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-a02d6ce75fd8a6934f971daf09fbd0169b9ac3acff485297cd319e942d68c21b3</citedby><cites>FETCH-LOGICAL-c758t-a02d6ce75fd8a6934f971daf09fbd0169b9ac3acff485297cd319e942d68c21b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688886/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688886/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23824159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Xiaoying</creatorcontrib><creatorcontrib>Oishi, Kenichi</creatorcontrib><creatorcontrib>Faria, Andreia V</creatorcontrib><creatorcontrib>Hillis, Argye E</creatorcontrib><creatorcontrib>Albert, Marilyn S</creatorcontrib><creatorcontrib>Mori, Susumu</creatorcontrib><creatorcontrib>Miller, Michael I</creatorcontrib><title>Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in the brain generated via manual delineation of the structures of interest. We focus on maximum a posteriori estimation of high dimensional segmentations of MR within the class of generative models representing the observed MRI as a conditionally Gaussian random field, conditioned on the atlas charts and the diffeomorphic change of coordinates of each chart that generates it. The charts and their diffeomorphic correspondences are unknown and viewed as latent or hidden variables. We demonstrate that the expectation-maximization (EM) algorithm arises naturally, yielding the likelihood-fusion equation which the a posteriori estimator of the segmentation labels maximizes. The likelihoods being fused are modeled as conditionally Gaussian random fields with mean fields a function of each atlas chart under its diffeomorphic change of coordinates onto the target. The conditional-mean in the EM algorithm specifies the convex weights with which the chart-specific likelihoods are fused. The multiple atlases with the associated convex weights imply that the posterior distribution is a multi-modal representation of the measured MRI. Segmentation results for subcortical and ventricular structures of subjects, within populations of demented subjects, are demonstrated, including the use of multiple atlases across multiple diseased groups.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Analysis</subject><subject>Anatomy</subject><subject>Automation</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain research</subject><subject>Charts</subject><subject>Computational neuroscience</subject><subject>Computer Science</subject><subject>Conditioning</subject><subject>Coordinate transformations</subject><subject>Engineering</subject><subject>Fields (mathematics)</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Likelihood Functions</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Models, Anatomic</subject><subject>Orbit - anatomy &amp; histology</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Probability</subject><subject>Resonance</subject><subject>Ventricle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9v0zAUxSMEYmPwDRBEQkLw0OI_iRO_IJVpQKVNRdvg1bqxndaTExfbQezb49JsatAeiB8SXf_Oce71ybKXGM0xrfCHGzf4Hux863o9R4iVJcePsmPMKZkxgujjg--j7FkINwiVtGbsaXZEaE0KXPLj7PoT3OpgoM-_gYdOR-3zsxBNB9G4Pode5Vd63ek-7gumz-NG5xeDjWa2iBZCfpkg1-Ur35iYXzil7fPsSQs26Bfj-yT7_vns-vTr7Hz1ZXm6OJ_JqqzjDBBRTOqqbFUNjNOi5RVW0CLeNgphxhsOkoJs26IuCa-kophrXiRVLQlu6En2eu-7tS6IcSBBYJrMEGeMJGK5J5SDG7H1qS9_KxwY8bfg_FqAj0ZaLUCWFSpqpWVDCo1pjSmtGqkahFGhOE5eH8fThqbTSqaZeLAT0-lObzZi7X4Jyur0sGTwbjTw7uegQxSdCVJbC712Q_rviuMKc1QUCX3zD_pwdyO1htSA6VuXzpU7U7EoqpqQMt1youYPUGkp3RmZ0tOaVJ8I3k8EiYn6d1zDEIJYXl3-P7v6MWXfHrAbDTZugrPDLlhhChZ7UHoXgtft_ZAxErvw301D7MIvxvAn2avDC7oX3aWd_gH39P5t</recordid><startdate>20130618</startdate><enddate>20130618</enddate><creator>Tang, Xiaoying</creator><creator>Oishi, Kenichi</creator><creator>Faria, Andreia V</creator><creator>Hillis, Argye E</creator><creator>Albert, Marilyn S</creator><creator>Mori, Susumu</creator><creator>Miller, Michael I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130618</creationdate><title>Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model</title><author>Tang, Xiaoying ; Oishi, Kenichi ; Faria, Andreia V ; Hillis, Argye E ; Albert, Marilyn S ; Mori, Susumu ; Miller, Michael I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-a02d6ce75fd8a6934f971daf09fbd0169b9ac3acff485297cd319e942d68c21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Analysis</topic><topic>Anatomy</topic><topic>Automation</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain research</topic><topic>Charts</topic><topic>Computational neuroscience</topic><topic>Computer Science</topic><topic>Conditioning</topic><topic>Coordinate transformations</topic><topic>Engineering</topic><topic>Fields (mathematics)</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Likelihood Functions</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Models, Anatomic</topic><topic>Orbit - anatomy &amp; histology</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Probability</topic><topic>Resonance</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xiaoying</creatorcontrib><creatorcontrib>Oishi, Kenichi</creatorcontrib><creatorcontrib>Faria, Andreia V</creatorcontrib><creatorcontrib>Hillis, Argye E</creatorcontrib><creatorcontrib>Albert, Marilyn S</creatorcontrib><creatorcontrib>Mori, Susumu</creatorcontrib><creatorcontrib>Miller, Michael I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xiaoying</au><au>Oishi, Kenichi</au><au>Faria, Andreia V</au><au>Hillis, Argye E</au><au>Albert, Marilyn S</au><au>Mori, Susumu</au><au>Miller, Michael I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-06-18</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e65591</spage><epage>e65591</epage><pages>e65591-e65591</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in the brain generated via manual delineation of the structures of interest. We focus on maximum a posteriori estimation of high dimensional segmentations of MR within the class of generative models representing the observed MRI as a conditionally Gaussian random field, conditioned on the atlas charts and the diffeomorphic change of coordinates of each chart that generates it. The charts and their diffeomorphic correspondences are unknown and viewed as latent or hidden variables. We demonstrate that the expectation-maximization (EM) algorithm arises naturally, yielding the likelihood-fusion equation which the a posteriori estimator of the segmentation labels maximizes. The likelihoods being fused are modeled as conditionally Gaussian random fields with mean fields a function of each atlas chart under its diffeomorphic change of coordinates onto the target. The conditional-mean in the EM algorithm specifies the convex weights with which the chart-specific likelihoods are fused. The multiple atlases with the associated convex weights imply that the posterior distribution is a multi-modal representation of the measured MRI. Segmentation results for subcortical and ventricular structures of subjects, within populations of demented subjects, are demonstrated, including the use of multiple atlases across multiple diseased groups.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23824159</pmid><doi>10.1371/journal.pone.0065591</doi><tpages>e65591</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-06, Vol.8 (6), p.e65591-e65591
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1369309662
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Alzheimer's disease
Analysis
Anatomy
Automation
Bayes Theorem
Bayesian analysis
Biology
Brain
Brain architecture
Brain research
Charts
Computational neuroscience
Computer Science
Conditioning
Coordinate transformations
Engineering
Fields (mathematics)
Humans
Image processing
Image segmentation
Likelihood Functions
Magnetic resonance
Magnetic Resonance Imaging
Mathematical models
Mathematics
Medical imaging
Medicine
Models, Anatomic
Orbit - anatomy & histology
Parameter estimation
Parameters
Probability
Resonance
Ventricle
title Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Parameter%20Estimation%20and%20Segmentation%20in%20the%20Multi-Atlas%20Random%20Orbit%20Model&rft.jtitle=PloS%20one&rft.au=Tang,%20Xiaoying&rft.date=2013-06-18&rft.volume=8&rft.issue=6&rft.spage=e65591&rft.epage=e65591&rft.pages=e65591-e65591&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0065591&rft_dat=%3Cgale_plos_%3EA478225241%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369309662&rft_id=info:pmid/23824159&rft_galeid=A478225241&rft_doaj_id=oai_doaj_org_article_ac57048decb24e1381337bcdb0104d91&rfr_iscdi=true