microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model
To date, miRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models. Brain tissues were...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-06, Vol.8 (6), p.e66393-e66393 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e66393 |
---|---|
container_issue | 6 |
container_start_page | e66393 |
container_title | PloS one |
container_volume | 8 |
creator | Liu, Fu Jia Lim, Kai Ying Kaur, Prameet Sepramaniam, Sugunavathi Armugam, Arunmozhiarasi Wong, Peter Tsun Hon Jeyaseelan, Kandiah |
description | To date, miRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models. Brain tissues were harvested at different reperfusion time points ranging from 0-168 hrs after middle cerebral artery occlusion using homologous emboli. MiRNA and mRNA expression profiles were investigated by microarray followed by multiple statistical analysis. Candidate transcripts were also validated by quantitative RT-PCR. Three specific groups of miRNAs were observed among a total of 346 differentially expressed miRNAs. miRNAs, miR-21, -142-3p, -142-5p, and -146a displayed significant upregulation during stroke recovery (48 hrs to 168 hrs) compared with those during acute phases (0 hrs to 24 hrs). On the other hand, an opposite trend was observed in the expression of miR-196a/b/c, -224 and -324-3p. Interestingly, miR-206, -290, -291a-5p and -30c-1*, positively correlated with the infarct sizes, with an initial increase up to 24hrs followed by a gradual decrease from 48 hrs to 168 hrs (R = 0.95). Taken together with the expression levels of corresponding mRNA targets, we have also found that Hedgehog, Notch, Wnt and TGF-β signaling pathways could play significant roles in stroke recovery and especially in neuronal repair. |
doi_str_mv | 10.1371/journal.pone.0066393 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1369309358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478225309</galeid><doaj_id>oai_doaj_org_article_740bc7eca999490e9af688f6e50a3803</doaj_id><sourcerecordid>A478225309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-9063f4c942ea23f3355f56a015e3da457ce4e82c2fae21cb7181c433b3ce31903</originalsourceid><addsrcrecordid>eNqNklFv0zAQxyMEYqPwDRBEQkLw0GL7Eid-QaqmAZU2JrXAq-U6l9TFjUucVOzb49BsatAekB9snX_3P93dP4peUjKjkNEPW9c1tbKzvatxRgjnIOBRdE4FsClnBB6fvM-iZ95vCUkh5_xpdMYgZ8BZch5d74xu3PLr3MeL-uDsAYvY1PESq86q1tRVvAoFWlWj63wIa3fA5rZHLndrZ42OV23jfmJ87Qq0z6MnpbIeXwz3JPr-6fLbxZfp1c3nxcX8aqqzNG-ngnAoEy0ShopBCZCmZcoVoSlCoZI005hgzjQrFTKq1xnNqU4A1qARqCAwiV4fdffWeTlMwksKXAARkOaBWByJwqmt3Ddmp5pb6ZSRfwOuqaRqWqMtyiwha52hVkKIRBAUquR5XnJMiYKcQND6OFTr1jssNNZto-xIdPxTm42s3EFC0BFhCZPo3SDQuF8d-lbujNdo7XGskmaCZgmkvO_szT_ow90NVKVCA6YuXaire1E5T7KcsbQHJ9HsASqcAsPWg21KE-KjhPejhMC0-LutVOe9XKyW_8_e_Bizb0_YDSrbbryzXWtc7cdgcgSDJ71vsLwfMiWyd_3dNGTvejm4PqS9Ol3QfdKdzeEPsXD7Ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369309358</pqid></control><display><type>article</type><title>microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Fu Jia ; Lim, Kai Ying ; Kaur, Prameet ; Sepramaniam, Sugunavathi ; Armugam, Arunmozhiarasi ; Wong, Peter Tsun Hon ; Jeyaseelan, Kandiah</creator><creatorcontrib>Liu, Fu Jia ; Lim, Kai Ying ; Kaur, Prameet ; Sepramaniam, Sugunavathi ; Armugam, Arunmozhiarasi ; Wong, Peter Tsun Hon ; Jeyaseelan, Kandiah</creatorcontrib><description>To date, miRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models. Brain tissues were harvested at different reperfusion time points ranging from 0-168 hrs after middle cerebral artery occlusion using homologous emboli. MiRNA and mRNA expression profiles were investigated by microarray followed by multiple statistical analysis. Candidate transcripts were also validated by quantitative RT-PCR. Three specific groups of miRNAs were observed among a total of 346 differentially expressed miRNAs. miRNAs, miR-21, -142-3p, -142-5p, and -146a displayed significant upregulation during stroke recovery (48 hrs to 168 hrs) compared with those during acute phases (0 hrs to 24 hrs). On the other hand, an opposite trend was observed in the expression of miR-196a/b/c, -224 and -324-3p. Interestingly, miR-206, -290, -291a-5p and -30c-1*, positively correlated with the infarct sizes, with an initial increase up to 24hrs followed by a gradual decrease from 48 hrs to 168 hrs (R = 0.95). Taken together with the expression levels of corresponding mRNA targets, we have also found that Hedgehog, Notch, Wnt and TGF-β signaling pathways could play significant roles in stroke recovery and especially in neuronal repair.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0066393</identifier><identifier>PMID: 23823624</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Animals ; Apoptosis ; Biochemistry ; Biology ; Brain ; Cell adhesion & migration ; Cells, Cultured ; Cerebral blood flow ; Communication ; Disease Models, Animal ; Disease Progression ; DNA microarrays ; Embolism - complications ; Gene expression ; Homology ; Ischemia ; Laboratory animals ; Male ; Mathematics ; Medical prognosis ; Medicine ; Mice ; MicroRNA ; MicroRNAs ; MicroRNAs - physiology ; miRNA ; Occlusion ; Polymerase chain reaction ; Rats ; Rats, Wistar ; Real-Time Polymerase Chain Reaction ; Recovery ; Reperfusion ; Rodents ; Signaling ; Spontaneous recovery ; Statistical analysis ; Stroke ; Stroke - etiology ; Stroke - physiopathology ; Tissues ; Transcriptome ; Wnt protein</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e66393-e66393</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Liu et al 2013 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-9063f4c942ea23f3355f56a015e3da457ce4e82c2fae21cb7181c433b3ce31903</citedby><cites>FETCH-LOGICAL-c758t-9063f4c942ea23f3355f56a015e3da457ce4e82c2fae21cb7181c433b3ce31903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688919/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688919/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23823624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fu Jia</creatorcontrib><creatorcontrib>Lim, Kai Ying</creatorcontrib><creatorcontrib>Kaur, Prameet</creatorcontrib><creatorcontrib>Sepramaniam, Sugunavathi</creatorcontrib><creatorcontrib>Armugam, Arunmozhiarasi</creatorcontrib><creatorcontrib>Wong, Peter Tsun Hon</creatorcontrib><creatorcontrib>Jeyaseelan, Kandiah</creatorcontrib><title>microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To date, miRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models. Brain tissues were harvested at different reperfusion time points ranging from 0-168 hrs after middle cerebral artery occlusion using homologous emboli. MiRNA and mRNA expression profiles were investigated by microarray followed by multiple statistical analysis. Candidate transcripts were also validated by quantitative RT-PCR. Three specific groups of miRNAs were observed among a total of 346 differentially expressed miRNAs. miRNAs, miR-21, -142-3p, -142-5p, and -146a displayed significant upregulation during stroke recovery (48 hrs to 168 hrs) compared with those during acute phases (0 hrs to 24 hrs). On the other hand, an opposite trend was observed in the expression of miR-196a/b/c, -224 and -324-3p. Interestingly, miR-206, -290, -291a-5p and -30c-1*, positively correlated with the infarct sizes, with an initial increase up to 24hrs followed by a gradual decrease from 48 hrs to 168 hrs (R = 0.95). Taken together with the expression levels of corresponding mRNA targets, we have also found that Hedgehog, Notch, Wnt and TGF-β signaling pathways could play significant roles in stroke recovery and especially in neuronal repair.</description><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Brain</subject><subject>Cell adhesion & migration</subject><subject>Cells, Cultured</subject><subject>Cerebral blood flow</subject><subject>Communication</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>DNA microarrays</subject><subject>Embolism - complications</subject><subject>Gene expression</subject><subject>Homology</subject><subject>Ischemia</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mathematics</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - physiology</subject><subject>miRNA</subject><subject>Occlusion</subject><subject>Polymerase chain reaction</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Recovery</subject><subject>Reperfusion</subject><subject>Rodents</subject><subject>Signaling</subject><subject>Spontaneous recovery</subject><subject>Statistical analysis</subject><subject>Stroke</subject><subject>Stroke - etiology</subject><subject>Stroke - physiopathology</subject><subject>Tissues</subject><subject>Transcriptome</subject><subject>Wnt protein</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFv0zAQxyMEYqPwDRBEQkLw0GL7Eid-QaqmAZU2JrXAq-U6l9TFjUucVOzb49BsatAekB9snX_3P93dP4peUjKjkNEPW9c1tbKzvatxRgjnIOBRdE4FsClnBB6fvM-iZ95vCUkh5_xpdMYgZ8BZch5d74xu3PLr3MeL-uDsAYvY1PESq86q1tRVvAoFWlWj63wIa3fA5rZHLndrZ42OV23jfmJ87Qq0z6MnpbIeXwz3JPr-6fLbxZfp1c3nxcX8aqqzNG-ngnAoEy0ShopBCZCmZcoVoSlCoZI005hgzjQrFTKq1xnNqU4A1qARqCAwiV4fdffWeTlMwksKXAARkOaBWByJwqmt3Ddmp5pb6ZSRfwOuqaRqWqMtyiwha52hVkKIRBAUquR5XnJMiYKcQND6OFTr1jssNNZto-xIdPxTm42s3EFC0BFhCZPo3SDQuF8d-lbujNdo7XGskmaCZgmkvO_szT_ow90NVKVCA6YuXaire1E5T7KcsbQHJ9HsASqcAsPWg21KE-KjhPejhMC0-LutVOe9XKyW_8_e_Bizb0_YDSrbbryzXWtc7cdgcgSDJ71vsLwfMiWyd_3dNGTvejm4PqS9Ol3QfdKdzeEPsXD7Ug</recordid><startdate>20130618</startdate><enddate>20130618</enddate><creator>Liu, Fu Jia</creator><creator>Lim, Kai Ying</creator><creator>Kaur, Prameet</creator><creator>Sepramaniam, Sugunavathi</creator><creator>Armugam, Arunmozhiarasi</creator><creator>Wong, Peter Tsun Hon</creator><creator>Jeyaseelan, Kandiah</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130618</creationdate><title>microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model</title><author>Liu, Fu Jia ; Lim, Kai Ying ; Kaur, Prameet ; Sepramaniam, Sugunavathi ; Armugam, Arunmozhiarasi ; Wong, Peter Tsun Hon ; Jeyaseelan, Kandiah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-9063f4c942ea23f3355f56a015e3da457ce4e82c2fae21cb7181c433b3ce31903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Brain</topic><topic>Cell adhesion & migration</topic><topic>Cells, Cultured</topic><topic>Cerebral blood flow</topic><topic>Communication</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>DNA microarrays</topic><topic>Embolism - complications</topic><topic>Gene expression</topic><topic>Homology</topic><topic>Ischemia</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mathematics</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - physiology</topic><topic>miRNA</topic><topic>Occlusion</topic><topic>Polymerase chain reaction</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Recovery</topic><topic>Reperfusion</topic><topic>Rodents</topic><topic>Signaling</topic><topic>Spontaneous recovery</topic><topic>Statistical analysis</topic><topic>Stroke</topic><topic>Stroke - etiology</topic><topic>Stroke - physiopathology</topic><topic>Tissues</topic><topic>Transcriptome</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fu Jia</creatorcontrib><creatorcontrib>Lim, Kai Ying</creatorcontrib><creatorcontrib>Kaur, Prameet</creatorcontrib><creatorcontrib>Sepramaniam, Sugunavathi</creatorcontrib><creatorcontrib>Armugam, Arunmozhiarasi</creatorcontrib><creatorcontrib>Wong, Peter Tsun Hon</creatorcontrib><creatorcontrib>Jeyaseelan, Kandiah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fu Jia</au><au>Lim, Kai Ying</au><au>Kaur, Prameet</au><au>Sepramaniam, Sugunavathi</au><au>Armugam, Arunmozhiarasi</au><au>Wong, Peter Tsun Hon</au><au>Jeyaseelan, Kandiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-06-18</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e66393</spage><epage>e66393</epage><pages>e66393-e66393</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To date, miRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models. Brain tissues were harvested at different reperfusion time points ranging from 0-168 hrs after middle cerebral artery occlusion using homologous emboli. MiRNA and mRNA expression profiles were investigated by microarray followed by multiple statistical analysis. Candidate transcripts were also validated by quantitative RT-PCR. Three specific groups of miRNAs were observed among a total of 346 differentially expressed miRNAs. miRNAs, miR-21, -142-3p, -142-5p, and -146a displayed significant upregulation during stroke recovery (48 hrs to 168 hrs) compared with those during acute phases (0 hrs to 24 hrs). On the other hand, an opposite trend was observed in the expression of miR-196a/b/c, -224 and -324-3p. Interestingly, miR-206, -290, -291a-5p and -30c-1*, positively correlated with the infarct sizes, with an initial increase up to 24hrs followed by a gradual decrease from 48 hrs to 168 hrs (R = 0.95). Taken together with the expression levels of corresponding mRNA targets, we have also found that Hedgehog, Notch, Wnt and TGF-β signaling pathways could play significant roles in stroke recovery and especially in neuronal repair.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23823624</pmid><doi>10.1371/journal.pone.0066393</doi><tpages>e66393</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-06, Vol.8 (6), p.e66393-e66393 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1369309358 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal models Animals Apoptosis Biochemistry Biology Brain Cell adhesion & migration Cells, Cultured Cerebral blood flow Communication Disease Models, Animal Disease Progression DNA microarrays Embolism - complications Gene expression Homology Ischemia Laboratory animals Male Mathematics Medical prognosis Medicine Mice MicroRNA MicroRNAs MicroRNAs - physiology miRNA Occlusion Polymerase chain reaction Rats Rats, Wistar Real-Time Polymerase Chain Reaction Recovery Reperfusion Rodents Signaling Spontaneous recovery Statistical analysis Stroke Stroke - etiology Stroke - physiopathology Tissues Transcriptome Wnt protein |
title | microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=microRNAs%20Involved%20in%20Regulating%20Spontaneous%20Recovery%20in%20Embolic%20Stroke%20Model&rft.jtitle=PloS%20one&rft.au=Liu,%20Fu%20Jia&rft.date=2013-06-18&rft.volume=8&rft.issue=6&rft.spage=e66393&rft.epage=e66393&rft.pages=e66393-e66393&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0066393&rft_dat=%3Cgale_plos_%3EA478225309%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369309358&rft_id=info:pmid/23823624&rft_galeid=A478225309&rft_doaj_id=oai_doaj_org_article_740bc7eca999490e9af688f6e50a3803&rfr_iscdi=true |