The impact of a ligand binding on strand migration in the SAM-I riboswitch

Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-05, Vol.9 (5), p.e1003069-e1003069
Hauptverfasser: Huang, Wei, Kim, Joohyun, Jha, Shantenu, Aboul-ela, Fareed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003069
container_issue 5
container_start_page e1003069
container_title PLoS computational biology
container_volume 9
creator Huang, Wei
Kim, Joohyun
Jha, Shantenu
Aboul-ela, Fareed
description Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (
doi_str_mv 10.1371/journal.pcbi.1003069
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1368615630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A334276811</galeid><doaj_id>oai_doaj_org_article_43584b78b4994beeaf7df736aab1932d</doaj_id><sourcerecordid>A334276811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-c6a7b087591d35a49453cffa6702b46a27138d6830e967566aa3b442c3ad3ab73</originalsourceid><addsrcrecordid>eNqVkkuPFCEUhStG44yj_8BoLXXRLRTP2ph0Jj7ajJo445pcKKqaThW0QPv499J2zWR6aUiAXL5zgJNbVc8xWmIi8Jtt2EcP43JntFtihAji7YPqHDNGFoIw-fDe_qx6ktK2MEy2_HF11hCBqGT0vPp0s7G1m3Zgch36GurRDeC7WjvfOT_Uwdcpx0NlckOE7ErB-ToX1fXq82JdR6dD-uWy2TytHvUwJvtsXi-q7-_f3Vx-XFx9_bC-XF0tDEcslxmERlKwFneEAW0pI6bvgQvUaMqhEZjIjkuCbMsF4xyAaEobQ6AjoAW5qF4efXdjSGqOISlMuOSYcYIKsT4SXYCt2kU3QfyjAjj1rxDioCBmZ0araImEaiE1bVuqrYVedL0g5VKNW9J0xevtfNteT7Yz1pc4xhPT0xPvNmoIPxXhjKO2LQavZoMYfuxtympyydhxBG_D_vBuxqjEUtCCLo_oAOVpzvehOJoyOjs5E7ztXamvCKGN4BLjInh9IihMtr_zAPuU1Pr623-wX05ZemRNDClF29_9FyN16L7b2NWh-9TcfUX24n5Wd6LbdiN_ARP71QA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355481874</pqid></control><display><type>article</type><title>The impact of a ligand binding on strand migration in the SAM-I riboswitch</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Huang, Wei ; Kim, Joohyun ; Jha, Shantenu ; Aboul-ela, Fareed</creator><contributor>MacKerell, Alexander Donald</contributor><creatorcontrib>Huang, Wei ; Kim, Joohyun ; Jha, Shantenu ; Aboul-ela, Fareed ; MacKerell, Alexander Donald</creatorcontrib><description>Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (&lt;500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003069</identifier><identifier>PMID: 23704854</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Chemistry ; Cluster Analysis ; Computational Biology - methods ; Gene expression ; Hydrogen Bonding ; Ligands ; Ligands (Biochemistry) ; Metabolites ; Migration ; Models, Genetic ; Molecular Dynamics Simulation ; Molecular genetics ; Nucleic Acid Conformation ; Physiological aspects ; Protein binding ; Proteins ; Riboswitch - genetics ; RNA sequencing ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; S-Adenosylmethionine - chemistry ; S-Adenosylmethionine - genetics ; S-Adenosylmethionine - metabolism ; Simulation</subject><ispartof>PLoS computational biology, 2013-05, Vol.9 (5), p.e1003069-e1003069</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Huang et al 2013 Huang et al</rights><rights>2013 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Huang W, Kim J, Jha S, Aboul-ela F (2013) The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch. PLoS Comput Biol 9(5): e1003069. doi:10.1371/journal.pcbi.1003069</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-c6a7b087591d35a49453cffa6702b46a27138d6830e967566aa3b442c3ad3ab73</citedby><cites>FETCH-LOGICAL-c605t-c6a7b087591d35a49453cffa6702b46a27138d6830e967566aa3b442c3ad3ab73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656099/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23704854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>MacKerell, Alexander Donald</contributor><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Kim, Joohyun</creatorcontrib><creatorcontrib>Jha, Shantenu</creatorcontrib><creatorcontrib>Aboul-ela, Fareed</creatorcontrib><title>The impact of a ligand binding on strand migration in the SAM-I riboswitch</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (&lt;500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.</description><subject>Biology</subject><subject>Chemistry</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Gene expression</subject><subject>Hydrogen Bonding</subject><subject>Ligands</subject><subject>Ligands (Biochemistry)</subject><subject>Metabolites</subject><subject>Migration</subject><subject>Models, Genetic</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular genetics</subject><subject>Nucleic Acid Conformation</subject><subject>Physiological aspects</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Riboswitch - genetics</subject><subject>RNA sequencing</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>S-Adenosylmethionine - chemistry</subject><subject>S-Adenosylmethionine - genetics</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Simulation</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuPFCEUhStG44yj_8BoLXXRLRTP2ph0Jj7ajJo445pcKKqaThW0QPv499J2zWR6aUiAXL5zgJNbVc8xWmIi8Jtt2EcP43JntFtihAji7YPqHDNGFoIw-fDe_qx6ktK2MEy2_HF11hCBqGT0vPp0s7G1m3Zgch36GurRDeC7WjvfOT_Uwdcpx0NlckOE7ErB-ToX1fXq82JdR6dD-uWy2TytHvUwJvtsXi-q7-_f3Vx-XFx9_bC-XF0tDEcslxmERlKwFneEAW0pI6bvgQvUaMqhEZjIjkuCbMsF4xyAaEobQ6AjoAW5qF4efXdjSGqOISlMuOSYcYIKsT4SXYCt2kU3QfyjAjj1rxDioCBmZ0araImEaiE1bVuqrYVedL0g5VKNW9J0xevtfNteT7Yz1pc4xhPT0xPvNmoIPxXhjKO2LQavZoMYfuxtympyydhxBG_D_vBuxqjEUtCCLo_oAOVpzvehOJoyOjs5E7ztXamvCKGN4BLjInh9IihMtr_zAPuU1Pr623-wX05ZemRNDClF29_9FyN16L7b2NWh-9TcfUX24n5Wd6LbdiN_ARP71QA</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Huang, Wei</creator><creator>Kim, Joohyun</creator><creator>Jha, Shantenu</creator><creator>Aboul-ela, Fareed</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130501</creationdate><title>The impact of a ligand binding on strand migration in the SAM-I riboswitch</title><author>Huang, Wei ; Kim, Joohyun ; Jha, Shantenu ; Aboul-ela, Fareed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-c6a7b087591d35a49453cffa6702b46a27138d6830e967566aa3b442c3ad3ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biology</topic><topic>Chemistry</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Gene expression</topic><topic>Hydrogen Bonding</topic><topic>Ligands</topic><topic>Ligands (Biochemistry)</topic><topic>Metabolites</topic><topic>Migration</topic><topic>Models, Genetic</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular genetics</topic><topic>Nucleic Acid Conformation</topic><topic>Physiological aspects</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Riboswitch - genetics</topic><topic>RNA sequencing</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>S-Adenosylmethionine - chemistry</topic><topic>S-Adenosylmethionine - genetics</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Kim, Joohyun</creatorcontrib><creatorcontrib>Jha, Shantenu</creatorcontrib><creatorcontrib>Aboul-ela, Fareed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wei</au><au>Kim, Joohyun</au><au>Jha, Shantenu</au><au>Aboul-ela, Fareed</au><au>MacKerell, Alexander Donald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of a ligand binding on strand migration in the SAM-I riboswitch</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>9</volume><issue>5</issue><spage>e1003069</spage><epage>e1003069</epage><pages>e1003069-e1003069</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (&lt;500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23704854</pmid><doi>10.1371/journal.pcbi.1003069</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-05, Vol.9 (5), p.e1003069-e1003069
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1368615630
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biology
Chemistry
Cluster Analysis
Computational Biology - methods
Gene expression
Hydrogen Bonding
Ligands
Ligands (Biochemistry)
Metabolites
Migration
Models, Genetic
Molecular Dynamics Simulation
Molecular genetics
Nucleic Acid Conformation
Physiological aspects
Protein binding
Proteins
Riboswitch - genetics
RNA sequencing
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
S-Adenosylmethionine - chemistry
S-Adenosylmethionine - genetics
S-Adenosylmethionine - metabolism
Simulation
title The impact of a ligand binding on strand migration in the SAM-I riboswitch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20a%20ligand%20binding%20on%20strand%20migration%20in%20the%20SAM-I%20riboswitch&rft.jtitle=PLoS%20computational%20biology&rft.au=Huang,%20Wei&rft.date=2013-05-01&rft.volume=9&rft.issue=5&rft.spage=e1003069&rft.epage=e1003069&rft.pages=e1003069-e1003069&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003069&rft_dat=%3Cgale_plos_%3EA334276811%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355481874&rft_id=info:pmid/23704854&rft_galeid=A334276811&rft_doaj_id=oai_doaj_org_article_43584b78b4994beeaf7df736aab1932d&rfr_iscdi=true