A mechanochemical model of cell reorientation on substrates under cyclic stretch
We report a theoretical study on the cyclic stretch-induced reorientation of spindle-shaped cells. Specifically, by taking into account the evolution of sub-cellular structures like the contractile stress fibers and adhesive receptor-ligand clusters, we develop a mechanochemical model to describe th...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-06, Vol.8 (6), p.e65864-e65864 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e65864 |
---|---|
container_issue | 6 |
container_start_page | e65864 |
container_title | PloS one |
container_volume | 8 |
creator | Qian, Jin Liu, Haipei Lin, Yuan Chen, Weiqiu Gao, Huajian |
description | We report a theoretical study on the cyclic stretch-induced reorientation of spindle-shaped cells. Specifically, by taking into account the evolution of sub-cellular structures like the contractile stress fibers and adhesive receptor-ligand clusters, we develop a mechanochemical model to describe the dynamics of cell realignment in response to cyclically stretched substrates. Our main hypothesis is that cells tend to orient in the direction where the formation of stress fibers is energetically most favorable. We show that, when subjected to cyclic stretch, the final alignment of cells reflects the competition between the elevated force within stress fibers that accelerates their disassembly and the disruption of cell-substrate adhesion as well, and an effectively increased substrate rigidity that promotes more stable focal adhesions. Our model predictions are consistent with various observations like the substrate rigidity dependent formation of stable adhesions and the stretching frequency, as well as stretching amplitude, dependence of cell realignment. This theory also provides a simple explanation on the regulation of protein Rho in the formation of stretch-induced stress fibers in cells. |
doi_str_mv | 10.1371/journal.pone.0065864 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1365653468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478411237</galeid><doaj_id>oai_doaj_org_article_4e16f72a626742dca82067d4da8ea9ff</doaj_id><sourcerecordid>A478411237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-448733d569e9713898dc5d8cb7c3b2bfccddcbba6158ed370b57eb7020d4ba923</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjGmSJumNMCx-DCys-HUb0uR0miVtxqQV99-b7nSXqeyFNNBy8pw3zXveLHteoHVBePHuyo-hV2699z2sEWKlYPRBdlpUBK8YRuTh0fdJ9iTGK4RKIhh7nJ1gwhmmlJ5mXzZ5B7pVvdctdFYrl3fegMt9k2twLg_gg4V-UIP1fZ5WHOs4BDVAzMfeQMj1tXZW56kIg26fZo8a5SI8m99n2Y-PH76ff15dXH7anm8uVppVeFhRKjghpmQVVLwgohJGl0bommtS47rR2hhd14oVpQBDOKpLDjVHGBlaqwqTs-zlQXfvfJSzGVEWhJWsJJSJRGwPhPHqSu6D7VS4ll5ZeVPwYSdVGKx2ICkUrOFYMcw4xUYrgRHjhholQFVNk7Tez6eNdQdGJ0OCcgvR5U5vW7nzvyVhvEQVSgJvZoHgf40QB9nZOBmsevDjzX9zIRAhZUJf_YPef7uZ2ql0Ads3Pp2rJ1G5oVzQokhDTtT6Hio9Zhp2Sk5jU33R8HbRkJgB_gw7NcYot9--_j97-XPJvj5iW1BuaKN345SquATpAdTBxxiguTO5QHIK_q0bcgq-nIOf2l4cD-iu6Tbp5C8YFP4h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365653468</pqid></control><display><type>article</type><title>A mechanochemical model of cell reorientation on substrates under cyclic stretch</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Qian, Jin ; Liu, Haipei ; Lin, Yuan ; Chen, Weiqiu ; Gao, Huajian</creator><contributor>Hotchin, Neil A.</contributor><creatorcontrib>Qian, Jin ; Liu, Haipei ; Lin, Yuan ; Chen, Weiqiu ; Gao, Huajian ; Hotchin, Neil A.</creatorcontrib><description>We report a theoretical study on the cyclic stretch-induced reorientation of spindle-shaped cells. Specifically, by taking into account the evolution of sub-cellular structures like the contractile stress fibers and adhesive receptor-ligand clusters, we develop a mechanochemical model to describe the dynamics of cell realignment in response to cyclically stretched substrates. Our main hypothesis is that cells tend to orient in the direction where the formation of stress fibers is energetically most favorable. We show that, when subjected to cyclic stretch, the final alignment of cells reflects the competition between the elevated force within stress fibers that accelerates their disassembly and the disruption of cell-substrate adhesion as well, and an effectively increased substrate rigidity that promotes more stable focal adhesions. Our model predictions are consistent with various observations like the substrate rigidity dependent formation of stable adhesions and the stretching frequency, as well as stretching amplitude, dependence of cell realignment. This theory also provides a simple explanation on the regulation of protein Rho in the formation of stretch-induced stress fibers in cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0065864</identifier><identifier>PMID: 23762444</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Biomechanical Phenomena ; Biomechanics ; Cell Adhesion ; Cell adhesion & migration ; Cell Shape ; Cells, Cultured ; Cellular structure ; Contractility ; Cytoskeleton - chemistry ; Cytoskeleton - physiology ; Dismantling ; Eukaryotic Cells - cytology ; Eukaryotic Cells - metabolism ; Eukaryotic Cells - physiology ; Fibers ; Fibroblasts ; Focal Adhesions - chemistry ; Focal Adhesions - physiology ; Humans ; Ligands ; Mechanical engineering ; Models, Biological ; Physics ; Physiology ; Realignment ; rho GTP-Binding Proteins - physiology ; Rigidity ; Stress ; Stress concentration ; Stress Fibers - chemistry ; Stress Fibers - physiology ; Stress, Mechanical ; Stresses ; Stretching ; Studies ; Substrates ; Thermodynamics</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e65864-e65864</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Qian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Qian et al 2013 Qian et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-448733d569e9713898dc5d8cb7c3b2bfccddcbba6158ed370b57eb7020d4ba923</citedby><cites>FETCH-LOGICAL-c692t-448733d569e9713898dc5d8cb7c3b2bfccddcbba6158ed370b57eb7020d4ba923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675090/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675090/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23762444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hotchin, Neil A.</contributor><creatorcontrib>Qian, Jin</creatorcontrib><creatorcontrib>Liu, Haipei</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Chen, Weiqiu</creatorcontrib><creatorcontrib>Gao, Huajian</creatorcontrib><title>A mechanochemical model of cell reorientation on substrates under cyclic stretch</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We report a theoretical study on the cyclic stretch-induced reorientation of spindle-shaped cells. Specifically, by taking into account the evolution of sub-cellular structures like the contractile stress fibers and adhesive receptor-ligand clusters, we develop a mechanochemical model to describe the dynamics of cell realignment in response to cyclically stretched substrates. Our main hypothesis is that cells tend to orient in the direction where the formation of stress fibers is energetically most favorable. We show that, when subjected to cyclic stretch, the final alignment of cells reflects the competition between the elevated force within stress fibers that accelerates their disassembly and the disruption of cell-substrate adhesion as well, and an effectively increased substrate rigidity that promotes more stable focal adhesions. Our model predictions are consistent with various observations like the substrate rigidity dependent formation of stable adhesions and the stretching frequency, as well as stretching amplitude, dependence of cell realignment. This theory also provides a simple explanation on the regulation of protein Rho in the formation of stretch-induced stress fibers in cells.</description><subject>Animals</subject><subject>Biology</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Cell Adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell Shape</subject><subject>Cells, Cultured</subject><subject>Cellular structure</subject><subject>Contractility</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - physiology</subject><subject>Dismantling</subject><subject>Eukaryotic Cells - cytology</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Eukaryotic Cells - physiology</subject><subject>Fibers</subject><subject>Fibroblasts</subject><subject>Focal Adhesions - chemistry</subject><subject>Focal Adhesions - physiology</subject><subject>Humans</subject><subject>Ligands</subject><subject>Mechanical engineering</subject><subject>Models, Biological</subject><subject>Physics</subject><subject>Physiology</subject><subject>Realignment</subject><subject>rho GTP-Binding Proteins - physiology</subject><subject>Rigidity</subject><subject>Stress</subject><subject>Stress concentration</subject><subject>Stress Fibers - chemistry</subject><subject>Stress Fibers - physiology</subject><subject>Stress, Mechanical</subject><subject>Stresses</subject><subject>Stretching</subject><subject>Studies</subject><subject>Substrates</subject><subject>Thermodynamics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjGmSJumNMCx-DCys-HUb0uR0miVtxqQV99-b7nSXqeyFNNBy8pw3zXveLHteoHVBePHuyo-hV2699z2sEWKlYPRBdlpUBK8YRuTh0fdJ9iTGK4RKIhh7nJ1gwhmmlJ5mXzZ5B7pVvdctdFYrl3fegMt9k2twLg_gg4V-UIP1fZ5WHOs4BDVAzMfeQMj1tXZW56kIg26fZo8a5SI8m99n2Y-PH76ff15dXH7anm8uVppVeFhRKjghpmQVVLwgohJGl0bommtS47rR2hhd14oVpQBDOKpLDjVHGBlaqwqTs-zlQXfvfJSzGVEWhJWsJJSJRGwPhPHqSu6D7VS4ll5ZeVPwYSdVGKx2ICkUrOFYMcw4xUYrgRHjhholQFVNk7Tez6eNdQdGJ0OCcgvR5U5vW7nzvyVhvEQVSgJvZoHgf40QB9nZOBmsevDjzX9zIRAhZUJf_YPef7uZ2ql0Ads3Pp2rJ1G5oVzQokhDTtT6Hio9Zhp2Sk5jU33R8HbRkJgB_gw7NcYot9--_j97-XPJvj5iW1BuaKN345SquATpAdTBxxiguTO5QHIK_q0bcgq-nIOf2l4cD-iu6Tbp5C8YFP4h</recordid><startdate>20130606</startdate><enddate>20130606</enddate><creator>Qian, Jin</creator><creator>Liu, Haipei</creator><creator>Lin, Yuan</creator><creator>Chen, Weiqiu</creator><creator>Gao, Huajian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130606</creationdate><title>A mechanochemical model of cell reorientation on substrates under cyclic stretch</title><author>Qian, Jin ; Liu, Haipei ; Lin, Yuan ; Chen, Weiqiu ; Gao, Huajian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-448733d569e9713898dc5d8cb7c3b2bfccddcbba6158ed370b57eb7020d4ba923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Cell Adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell Shape</topic><topic>Cells, Cultured</topic><topic>Cellular structure</topic><topic>Contractility</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - physiology</topic><topic>Dismantling</topic><topic>Eukaryotic Cells - cytology</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Eukaryotic Cells - physiology</topic><topic>Fibers</topic><topic>Fibroblasts</topic><topic>Focal Adhesions - chemistry</topic><topic>Focal Adhesions - physiology</topic><topic>Humans</topic><topic>Ligands</topic><topic>Mechanical engineering</topic><topic>Models, Biological</topic><topic>Physics</topic><topic>Physiology</topic><topic>Realignment</topic><topic>rho GTP-Binding Proteins - physiology</topic><topic>Rigidity</topic><topic>Stress</topic><topic>Stress concentration</topic><topic>Stress Fibers - chemistry</topic><topic>Stress Fibers - physiology</topic><topic>Stress, Mechanical</topic><topic>Stresses</topic><topic>Stretching</topic><topic>Studies</topic><topic>Substrates</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Jin</creatorcontrib><creatorcontrib>Liu, Haipei</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Chen, Weiqiu</creatorcontrib><creatorcontrib>Gao, Huajian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Jin</au><au>Liu, Haipei</au><au>Lin, Yuan</au><au>Chen, Weiqiu</au><au>Gao, Huajian</au><au>Hotchin, Neil A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanochemical model of cell reorientation on substrates under cyclic stretch</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-06-06</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e65864</spage><epage>e65864</epage><pages>e65864-e65864</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We report a theoretical study on the cyclic stretch-induced reorientation of spindle-shaped cells. Specifically, by taking into account the evolution of sub-cellular structures like the contractile stress fibers and adhesive receptor-ligand clusters, we develop a mechanochemical model to describe the dynamics of cell realignment in response to cyclically stretched substrates. Our main hypothesis is that cells tend to orient in the direction where the formation of stress fibers is energetically most favorable. We show that, when subjected to cyclic stretch, the final alignment of cells reflects the competition between the elevated force within stress fibers that accelerates their disassembly and the disruption of cell-substrate adhesion as well, and an effectively increased substrate rigidity that promotes more stable focal adhesions. Our model predictions are consistent with various observations like the substrate rigidity dependent formation of stable adhesions and the stretching frequency, as well as stretching amplitude, dependence of cell realignment. This theory also provides a simple explanation on the regulation of protein Rho in the formation of stretch-induced stress fibers in cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23762444</pmid><doi>10.1371/journal.pone.0065864</doi><tpages>e65864</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-06, Vol.8 (6), p.e65864-e65864 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1365653468 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Biology Biomechanical Phenomena Biomechanics Cell Adhesion Cell adhesion & migration Cell Shape Cells, Cultured Cellular structure Contractility Cytoskeleton - chemistry Cytoskeleton - physiology Dismantling Eukaryotic Cells - cytology Eukaryotic Cells - metabolism Eukaryotic Cells - physiology Fibers Fibroblasts Focal Adhesions - chemistry Focal Adhesions - physiology Humans Ligands Mechanical engineering Models, Biological Physics Physiology Realignment rho GTP-Binding Proteins - physiology Rigidity Stress Stress concentration Stress Fibers - chemistry Stress Fibers - physiology Stress, Mechanical Stresses Stretching Studies Substrates Thermodynamics |
title | A mechanochemical model of cell reorientation on substrates under cyclic stretch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanochemical%20model%20of%20cell%20reorientation%20on%20substrates%20under%20cyclic%20stretch&rft.jtitle=PloS%20one&rft.au=Qian,%20Jin&rft.date=2013-06-06&rft.volume=8&rft.issue=6&rft.spage=e65864&rft.epage=e65864&rft.pages=e65864-e65864&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0065864&rft_dat=%3Cgale_plos_%3EA478411237%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365653468&rft_id=info:pmid/23762444&rft_galeid=A478411237&rft_doaj_id=oai_doaj_org_article_4e16f72a626742dca82067d4da8ea9ff&rfr_iscdi=true |