Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells

Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-prolifera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-06, Vol.8 (6), p.e65250
Hauptverfasser: Hau, Andrew M, Greenwood, Jeffrey A, Löhr, Christiane V, Serrill, Jeffrey D, Proteau, Philip J, Ganley, Ian G, McPhail, Kerry L, Ishmael, Jane E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e65250
container_title PloS one
container_volume 8
creator Hau, Andrew M
Greenwood, Jeffrey A
Löhr, Christiane V
Serrill, Jeffrey D
Proteau, Philip J
Ganley, Ian G
McPhail, Kerry L
Ishmael, Jane E
description Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and "COMPARE-negative" profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50
doi_str_mv 10.1371/journal.pone.0065250
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1365653274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478411180</galeid><doaj_id>oai_doaj_org_article_ad6d170e6dbe49d98aa2c9990206bcf2</doaj_id><sourcerecordid>A478411180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5bd3f7eda75439afa7b209f98c389f86d18b21c1dafe9de47ac1aebc5e809cf23</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguBFx3y0aXIjDIMfAwsD6yp4Fd4maZshbcamFfffm93pLlNQkELaJs85bzicJHmJ0QrTEr_f-2nowa0OvjcrhFhBCvQoOceCkowRRB-ffJ8lz0LYI1RQztjT5IzQkhFK-HnyY-NtBZ3VJl2ntteTMiHtrndXWfwxBxOXfkxhGv2hheYmhV6nyjiXagNjGxVpO3XQp42zvnIQRt_BHRCeJ09qcMG8mN8XybdPH683X7LL3eftZn2ZKSbImBWVpnVpNJRFTgXUUFYEiVpwRbmoOdOYVwQrrKE2Qpu8BIXBVKowHAlVE3qRvD76HpwPck4lSExZwQpKyjwS2yOhPezlYbAdDDfSg5V3G35oJAyjVc5I0HFgiQzTlcmFFhyAKCEEIohVx2kf5mlT1RmtYjoDuIXp8qS3rWz8L0lZWeCCR4M3s8Hgf04mjP-48kw1EG9l-9pHM9XZoOQ6L3mOMeYoUqu_UPHRprMq9qK2cX8heLcQRGY0v8cGphDk9uvV_7O770v27QnbGnBjG7ybRuv7sATzI6gGH8Jg6ofkMJK3tb5PQ97WWs61jrJXp6k_iO57TP8AmgTzsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365653274</pqid></control><display><type>article</type><title>Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hau, Andrew M ; Greenwood, Jeffrey A ; Löhr, Christiane V ; Serrill, Jeffrey D ; Proteau, Philip J ; Ganley, Ian G ; McPhail, Kerry L ; Ishmael, Jane E</creator><contributor>Ko, Ben C.B.</contributor><creatorcontrib>Hau, Andrew M ; Greenwood, Jeffrey A ; Löhr, Christiane V ; Serrill, Jeffrey D ; Proteau, Philip J ; Ganley, Ian G ; McPhail, Kerry L ; Ishmael, Jane E ; Ko, Ben C.B.</creatorcontrib><description>Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and "COMPARE-negative" profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50&lt;100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death mechanisms in apoptotic-resistant cancer cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0065250</identifier><identifier>PMID: 23762328</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Apaf-1 protein ; Apoptosis ; Apoptosis - drug effects ; Apoptotic Protease-Activating Factor 1 - deficiency ; Apoptotic Protease-Activating Factor 1 - genetics ; Autophagy ; Autophagy - drug effects ; Autophagy-Related Protein 5 ; Autophagy-Related Protein-1 Homolog ; Bioaccumulation ; Biochemistry ; Biodiversity ; Biology ; Brain cancer ; Cancer ; Caspase ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Caspase-3 ; Cell cycle ; Cell Cycle Proteins ; Cell death ; Cell Line, Tumor ; Cyanobacteria ; Cytotoxicity ; Cytotoxins - pharmacology ; Depsipeptides - pharmacology ; Embryo fibroblasts ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Gene Expression Regulation, Neoplastic - drug effects ; Glioblastoma ; Glioblastoma cells ; Glioblastomas ; Glioma ; Growth factors ; Humans ; Immunoglobulins ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Kinases ; Mathematics ; Medical prognosis ; Medicine ; Melanoma ; Mice ; Microtubule-Associated Proteins - deficiency ; Microtubule-Associated Proteins - genetics ; Mitochondria ; Mortality ; Natural products ; Organ Specificity ; Phagocytosis ; Pharmaceutical sciences ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Ribosomal Protein S6 Kinases - genetics ; Ribosomal Protein S6 Kinases - metabolism ; Signal Transduction - drug effects ; Signaling ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Toxicity</subject><ispartof>PloS one, 2013-06, Vol.8 (6), p.e65250</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Hau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Hau et al 2013 Hau et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5bd3f7eda75439afa7b209f98c389f86d18b21c1dafe9de47ac1aebc5e809cf23</citedby><cites>FETCH-LOGICAL-c692t-5bd3f7eda75439afa7b209f98c389f86d18b21c1dafe9de47ac1aebc5e809cf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675158/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675158/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23762328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ko, Ben C.B.</contributor><creatorcontrib>Hau, Andrew M</creatorcontrib><creatorcontrib>Greenwood, Jeffrey A</creatorcontrib><creatorcontrib>Löhr, Christiane V</creatorcontrib><creatorcontrib>Serrill, Jeffrey D</creatorcontrib><creatorcontrib>Proteau, Philip J</creatorcontrib><creatorcontrib>Ganley, Ian G</creatorcontrib><creatorcontrib>McPhail, Kerry L</creatorcontrib><creatorcontrib>Ishmael, Jane E</creatorcontrib><title>Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and "COMPARE-negative" profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50&lt;100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death mechanisms in apoptotic-resistant cancer cells.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Apaf-1 protein</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptotic Protease-Activating Factor 1 - deficiency</subject><subject>Apoptotic Protease-Activating Factor 1 - genetics</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy-Related Protein 5</subject><subject>Autophagy-Related Protein-1 Homolog</subject><subject>Bioaccumulation</subject><subject>Biochemistry</subject><subject>Biodiversity</subject><subject>Biology</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Caspase</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-3</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cyanobacteria</subject><subject>Cytotoxicity</subject><subject>Cytotoxins - pharmacology</subject><subject>Depsipeptides - pharmacology</subject><subject>Embryo fibroblasts</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Glioblastoma</subject><subject>Glioblastoma cells</subject><subject>Glioblastomas</subject><subject>Glioma</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kinases</subject><subject>Mathematics</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Melanoma</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - deficiency</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Mitochondria</subject><subject>Mortality</subject><subject>Natural products</subject><subject>Organ Specificity</subject><subject>Phagocytosis</subject><subject>Pharmaceutical sciences</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Ribosomal Protein S6 Kinases - genetics</subject><subject>Ribosomal Protein S6 Kinases - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Toxicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguBFx3y0aXIjDIMfAwsD6yp4Fd4maZshbcamFfffm93pLlNQkELaJs85bzicJHmJ0QrTEr_f-2nowa0OvjcrhFhBCvQoOceCkowRRB-ffJ8lz0LYI1RQztjT5IzQkhFK-HnyY-NtBZ3VJl2ntteTMiHtrndXWfwxBxOXfkxhGv2hheYmhV6nyjiXagNjGxVpO3XQp42zvnIQRt_BHRCeJ09qcMG8mN8XybdPH683X7LL3eftZn2ZKSbImBWVpnVpNJRFTgXUUFYEiVpwRbmoOdOYVwQrrKE2Qpu8BIXBVKowHAlVE3qRvD76HpwPck4lSExZwQpKyjwS2yOhPezlYbAdDDfSg5V3G35oJAyjVc5I0HFgiQzTlcmFFhyAKCEEIohVx2kf5mlT1RmtYjoDuIXp8qS3rWz8L0lZWeCCR4M3s8Hgf04mjP-48kw1EG9l-9pHM9XZoOQ6L3mOMeYoUqu_UPHRprMq9qK2cX8heLcQRGY0v8cGphDk9uvV_7O770v27QnbGnBjG7ybRuv7sATzI6gGH8Jg6ofkMJK3tb5PQ97WWs61jrJXp6k_iO57TP8AmgTzsg</recordid><startdate>20130606</startdate><enddate>20130606</enddate><creator>Hau, Andrew M</creator><creator>Greenwood, Jeffrey A</creator><creator>Löhr, Christiane V</creator><creator>Serrill, Jeffrey D</creator><creator>Proteau, Philip J</creator><creator>Ganley, Ian G</creator><creator>McPhail, Kerry L</creator><creator>Ishmael, Jane E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130606</creationdate><title>Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells</title><author>Hau, Andrew M ; Greenwood, Jeffrey A ; Löhr, Christiane V ; Serrill, Jeffrey D ; Proteau, Philip J ; Ganley, Ian G ; McPhail, Kerry L ; Ishmael, Jane E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5bd3f7eda75439afa7b209f98c389f86d18b21c1dafe9de47ac1aebc5e809cf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Apaf-1 protein</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptotic Protease-Activating Factor 1 - deficiency</topic><topic>Apoptotic Protease-Activating Factor 1 - genetics</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy-Related Protein 5</topic><topic>Autophagy-Related Protein-1 Homolog</topic><topic>Bioaccumulation</topic><topic>Biochemistry</topic><topic>Biodiversity</topic><topic>Biology</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Caspase</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-3</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cyanobacteria</topic><topic>Cytotoxicity</topic><topic>Cytotoxins - pharmacology</topic><topic>Depsipeptides - pharmacology</topic><topic>Embryo fibroblasts</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Glioblastoma</topic><topic>Glioblastoma cells</topic><topic>Glioblastomas</topic><topic>Glioma</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kinases</topic><topic>Mathematics</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Melanoma</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - deficiency</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Mitochondria</topic><topic>Mortality</topic><topic>Natural products</topic><topic>Organ Specificity</topic><topic>Phagocytosis</topic><topic>Pharmaceutical sciences</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Ribosomal Protein S6 Kinases - genetics</topic><topic>Ribosomal Protein S6 Kinases - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hau, Andrew M</creatorcontrib><creatorcontrib>Greenwood, Jeffrey A</creatorcontrib><creatorcontrib>Löhr, Christiane V</creatorcontrib><creatorcontrib>Serrill, Jeffrey D</creatorcontrib><creatorcontrib>Proteau, Philip J</creatorcontrib><creatorcontrib>Ganley, Ian G</creatorcontrib><creatorcontrib>McPhail, Kerry L</creatorcontrib><creatorcontrib>Ishmael, Jane E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hau, Andrew M</au><au>Greenwood, Jeffrey A</au><au>Löhr, Christiane V</au><au>Serrill, Jeffrey D</au><au>Proteau, Philip J</au><au>Ganley, Ian G</au><au>McPhail, Kerry L</au><au>Ishmael, Jane E</au><au>Ko, Ben C.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-06-06</date><risdate>2013</risdate><volume>8</volume><issue>6</issue><spage>e65250</spage><pages>e65250-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and "COMPARE-negative" profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50&lt;100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death mechanisms in apoptotic-resistant cancer cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23762328</pmid><doi>10.1371/journal.pone.0065250</doi><tpages>e65250</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-06, Vol.8 (6), p.e65250
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1365653274
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Apaf-1 protein
Apoptosis
Apoptosis - drug effects
Apoptotic Protease-Activating Factor 1 - deficiency
Apoptotic Protease-Activating Factor 1 - genetics
Autophagy
Autophagy - drug effects
Autophagy-Related Protein 5
Autophagy-Related Protein-1 Homolog
Bioaccumulation
Biochemistry
Biodiversity
Biology
Brain cancer
Cancer
Caspase
Caspase 3 - genetics
Caspase 3 - metabolism
Caspase-3
Cell cycle
Cell Cycle Proteins
Cell death
Cell Line, Tumor
Cyanobacteria
Cytotoxicity
Cytotoxins - pharmacology
Depsipeptides - pharmacology
Embryo fibroblasts
Fibroblasts
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Glioblastoma
Glioblastoma cells
Glioblastomas
Glioma
Growth factors
Humans
Immunoglobulins
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Kinases
Mathematics
Medical prognosis
Medicine
Melanoma
Mice
Microtubule-Associated Proteins - deficiency
Microtubule-Associated Proteins - genetics
Mitochondria
Mortality
Natural products
Organ Specificity
Phagocytosis
Pharmaceutical sciences
Phosphoproteins - genetics
Phosphoproteins - metabolism
Phosphorylation
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteins
Ribosomal Protein S6 Kinases - genetics
Ribosomal Protein S6 Kinases - metabolism
Signal Transduction - drug effects
Signaling
TOR protein
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Toxicity
title Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coibamide%20A%20induces%20mTOR-independent%20autophagy%20and%20cell%20death%20in%20human%20glioblastoma%20cells&rft.jtitle=PloS%20one&rft.au=Hau,%20Andrew%20M&rft.date=2013-06-06&rft.volume=8&rft.issue=6&rft.spage=e65250&rft.pages=e65250-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0065250&rft_dat=%3Cgale_plos_%3EA478411180%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365653274&rft_id=info:pmid/23762328&rft_galeid=A478411180&rft_doaj_id=oai_doaj_org_article_ad6d170e6dbe49d98aa2c9990206bcf2&rfr_iscdi=true