Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter

Production of reactive oxygen species (ROS) has been implicated in the pathology of many conditions, including cardiovascular, inflammatory and degenerative diseases, aging, muscular dystrophy, and muscle fatigue. NADPH oxidases (Nox) have recently gained attention as an important source of ROS invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-05, Vol.8 (5), p.e63989-e63989
Hauptverfasser: Pal, Rituraj, Basu Thakur, Poulami, Li, Shumin, Minard, Charles, Rodney, George G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e63989
container_issue 5
container_start_page e63989
container_title PloS one
container_volume 8
creator Pal, Rituraj
Basu Thakur, Poulami
Li, Shumin
Minard, Charles
Rodney, George G
description Production of reactive oxygen species (ROS) has been implicated in the pathology of many conditions, including cardiovascular, inflammatory and degenerative diseases, aging, muscular dystrophy, and muscle fatigue. NADPH oxidases (Nox) have recently gained attention as an important source of ROS involved in redox signaling. However, our knowledge of the source of ROS has been limited by the relatively impoverished array of tools available to study them and the limitations of all imaging probes to provide meaningful spatial resolution. By linking redox-sensitive GFP (roGFP) to the Nox organizer protein, p47(phox), we have developed a redox sensitive protein to specifically assess Nox activity (p47-roGFP). Stimulation of murine macrophages with endotoxin resulted in rapid, reversible oxidation of p47-roGFP. In murine skeletal muscle, both passive stretch and repetitive electrical stimulation resulted in oxidation of p47-roGFP. The oxidation of p47-roGFP in both macrophages and skeletal muscle was blocked by a Nox specific peptide inhibitor. Furthermore, expression of p47-roGFP in p47(phox) deficient cells restored Nox activity. As Nox has been linked to pathological redox signaling, our newly developed Nox biosensor will allow for the direct assessment of Nox activity and the development of therapeutic Nox inhibitors.
doi_str_mv 10.1371/journal.pone.0063989
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1353660070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478172910</galeid><doaj_id>oai_doaj_org_article_96f3ccca316f4adcbeee789a67489652</doaj_id><sourcerecordid>A478172910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-aa29558c61cb0eee3427345303351a68d14289a7a1a3b5fb86c06cc933f74f473</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOHTu5IK3KoytVFJXH1fI646wrb7zYzqr99jjdtNqgHpAPGTm_-c_DM1n2EqM5Jhx_uHK976Sdb10Hc4QYqav6UXaMa1LMWIHI4wP7KHsWwhVCJakYe5odFYQjWjN-nOlLkHYWzQZys5Gt6drc6fzb4tP3s9xdm0YGyKWKZmfiTW663CYrMQqsDXkfBlvmnduBzbXtnYegoIv51rsICfewdT6Cf5490dIGeDF-T7JfXz7_PD2bnV98XZ4uzmeKl1WcSVnUZVkphtUKAQChBSe0JIiQEktWNZgWVS25xJKsSr2qmEJMqZoQzammnJxkr_e6W-uCGFsUBCYlYQwhjhKx3BONk1di61PV_kY4acTthfOtkD4aZUHUTBOllCSYaSobtUoZ8RSecVrVrCyS1scxWr_aQDNU7qWdiE7_dGYtWrcTQzKkGNJ9Nwp496eHEMXGhKG3sgPX3-Zd0grjAif0zT_ow9WNVCtTAabTLsVVg6hYUF5hXtR4oOYPUOk0sDEqzZM26X7i8H7ikJgI17GVfQhi-ePy_9mL31P27QG7TqMY18HZPhrXhSlI96DyLgQP-r7JGIlhHe66IYZ1EOM6JLdXhw9073Q3_-Qvh0kEwA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353660070</pqid></control><display><type>article</type><title>Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pal, Rituraj ; Basu Thakur, Poulami ; Li, Shumin ; Minard, Charles ; Rodney, George G</creator><contributor>Ushio-Fukai, Masuko</contributor><creatorcontrib>Pal, Rituraj ; Basu Thakur, Poulami ; Li, Shumin ; Minard, Charles ; Rodney, George G ; Ushio-Fukai, Masuko</creatorcontrib><description>Production of reactive oxygen species (ROS) has been implicated in the pathology of many conditions, including cardiovascular, inflammatory and degenerative diseases, aging, muscular dystrophy, and muscle fatigue. NADPH oxidases (Nox) have recently gained attention as an important source of ROS involved in redox signaling. However, our knowledge of the source of ROS has been limited by the relatively impoverished array of tools available to study them and the limitations of all imaging probes to provide meaningful spatial resolution. By linking redox-sensitive GFP (roGFP) to the Nox organizer protein, p47(phox), we have developed a redox sensitive protein to specifically assess Nox activity (p47-roGFP). Stimulation of murine macrophages with endotoxin resulted in rapid, reversible oxidation of p47-roGFP. In murine skeletal muscle, both passive stretch and repetitive electrical stimulation resulted in oxidation of p47-roGFP. The oxidation of p47-roGFP in both macrophages and skeletal muscle was blocked by a Nox specific peptide inhibitor. Furthermore, expression of p47-roGFP in p47(phox) deficient cells restored Nox activity. As Nox has been linked to pathological redox signaling, our newly developed Nox biosensor will allow for the direct assessment of Nox activity and the development of therapeutic Nox inhibitors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0063989</identifier><identifier>PMID: 23704967</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging ; Animals ; Biology ; Biophysics ; Biosensing Techniques ; Biosensors ; Cell Survival - drug effects ; Cloning ; Computer Systems ; Degenerative diseases ; Deoxyribonucleic acid ; DNA ; Dystrophy ; Electric Stimulation ; Electrical stimuli ; Extracellular Space - drug effects ; Extracellular Space - metabolism ; Fatigue ; Fibroblasts ; Fluorescence ; Free radicals ; Genes, Reporter ; Green Fluorescent Proteins - metabolism ; Humans ; In Vitro Techniques ; Journalists ; Kinases ; Laboratory animals ; Lipopolysaccharides - pharmacology ; Macrophage Activation - drug effects ; Macrophages ; Medicine ; Membrane Glycoproteins - deficiency ; Membrane Glycoproteins - metabolism ; Mice ; Mitochondria ; Molecular Imaging - methods ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - enzymology ; Muscles ; Muscular dystrophy ; Muscular fatigue ; Musculoskeletal system ; NAD(P)H oxidase ; NADPH Oxidase 2 ; NADPH Oxidases - deficiency ; NADPH Oxidases - metabolism ; Oxidases ; Oxidation ; Oxidation-Reduction - drug effects ; Oxygen ; Penicillin ; Physiology ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Signaling ; Skeletal muscle ; Spatial discrimination ; Spatial resolution ; Stimulation ; Time Factors</subject><ispartof>PloS one, 2013-05, Vol.8 (5), p.e63989-e63989</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Pal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Pal et al 2013 Pal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-aa29558c61cb0eee3427345303351a68d14289a7a1a3b5fb86c06cc933f74f473</citedby><cites>FETCH-LOGICAL-c758t-aa29558c61cb0eee3427345303351a68d14289a7a1a3b5fb86c06cc933f74f473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660327/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660327/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23704967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ushio-Fukai, Masuko</contributor><creatorcontrib>Pal, Rituraj</creatorcontrib><creatorcontrib>Basu Thakur, Poulami</creatorcontrib><creatorcontrib>Li, Shumin</creatorcontrib><creatorcontrib>Minard, Charles</creatorcontrib><creatorcontrib>Rodney, George G</creatorcontrib><title>Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Production of reactive oxygen species (ROS) has been implicated in the pathology of many conditions, including cardiovascular, inflammatory and degenerative diseases, aging, muscular dystrophy, and muscle fatigue. NADPH oxidases (Nox) have recently gained attention as an important source of ROS involved in redox signaling. However, our knowledge of the source of ROS has been limited by the relatively impoverished array of tools available to study them and the limitations of all imaging probes to provide meaningful spatial resolution. By linking redox-sensitive GFP (roGFP) to the Nox organizer protein, p47(phox), we have developed a redox sensitive protein to specifically assess Nox activity (p47-roGFP). Stimulation of murine macrophages with endotoxin resulted in rapid, reversible oxidation of p47-roGFP. In murine skeletal muscle, both passive stretch and repetitive electrical stimulation resulted in oxidation of p47-roGFP. The oxidation of p47-roGFP in both macrophages and skeletal muscle was blocked by a Nox specific peptide inhibitor. Furthermore, expression of p47-roGFP in p47(phox) deficient cells restored Nox activity. As Nox has been linked to pathological redox signaling, our newly developed Nox biosensor will allow for the direct assessment of Nox activity and the development of therapeutic Nox inhibitors.</description><subject>Aging</subject><subject>Animals</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Cell Survival - drug effects</subject><subject>Cloning</subject><subject>Computer Systems</subject><subject>Degenerative diseases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dystrophy</subject><subject>Electric Stimulation</subject><subject>Electrical stimuli</subject><subject>Extracellular Space - drug effects</subject><subject>Extracellular Space - metabolism</subject><subject>Fatigue</subject><subject>Fibroblasts</subject><subject>Fluorescence</subject><subject>Free radicals</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Journalists</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophage Activation - drug effects</subject><subject>Macrophages</subject><subject>Medicine</subject><subject>Membrane Glycoproteins - deficiency</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Molecular Imaging - methods</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - enzymology</subject><subject>Muscles</subject><subject>Muscular dystrophy</subject><subject>Muscular fatigue</subject><subject>Musculoskeletal system</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - deficiency</subject><subject>NADPH Oxidases - metabolism</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxygen</subject><subject>Penicillin</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stimulation</subject><subject>Time Factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOHTu5IK3KoytVFJXH1fI646wrb7zYzqr99jjdtNqgHpAPGTm_-c_DM1n2EqM5Jhx_uHK976Sdb10Hc4QYqav6UXaMa1LMWIHI4wP7KHsWwhVCJakYe5odFYQjWjN-nOlLkHYWzQZys5Gt6drc6fzb4tP3s9xdm0YGyKWKZmfiTW663CYrMQqsDXkfBlvmnduBzbXtnYegoIv51rsICfewdT6Cf5490dIGeDF-T7JfXz7_PD2bnV98XZ4uzmeKl1WcSVnUZVkphtUKAQChBSe0JIiQEktWNZgWVS25xJKsSr2qmEJMqZoQzammnJxkr_e6W-uCGFsUBCYlYQwhjhKx3BONk1di61PV_kY4acTthfOtkD4aZUHUTBOllCSYaSobtUoZ8RSecVrVrCyS1scxWr_aQDNU7qWdiE7_dGYtWrcTQzKkGNJ9Nwp496eHEMXGhKG3sgPX3-Zd0grjAif0zT_ow9WNVCtTAabTLsVVg6hYUF5hXtR4oOYPUOk0sDEqzZM26X7i8H7ikJgI17GVfQhi-ePy_9mL31P27QG7TqMY18HZPhrXhSlI96DyLgQP-r7JGIlhHe66IYZ1EOM6JLdXhw9073Q3_-Qvh0kEwA</recordid><startdate>20130521</startdate><enddate>20130521</enddate><creator>Pal, Rituraj</creator><creator>Basu Thakur, Poulami</creator><creator>Li, Shumin</creator><creator>Minard, Charles</creator><creator>Rodney, George G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130521</creationdate><title>Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter</title><author>Pal, Rituraj ; Basu Thakur, Poulami ; Li, Shumin ; Minard, Charles ; Rodney, George G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-aa29558c61cb0eee3427345303351a68d14289a7a1a3b5fb86c06cc933f74f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Cell Survival - drug effects</topic><topic>Cloning</topic><topic>Computer Systems</topic><topic>Degenerative diseases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dystrophy</topic><topic>Electric Stimulation</topic><topic>Electrical stimuli</topic><topic>Extracellular Space - drug effects</topic><topic>Extracellular Space - metabolism</topic><topic>Fatigue</topic><topic>Fibroblasts</topic><topic>Fluorescence</topic><topic>Free radicals</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Journalists</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophage Activation - drug effects</topic><topic>Macrophages</topic><topic>Medicine</topic><topic>Membrane Glycoproteins - deficiency</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Molecular Imaging - methods</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - enzymology</topic><topic>Muscles</topic><topic>Muscular dystrophy</topic><topic>Muscular fatigue</topic><topic>Musculoskeletal system</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - deficiency</topic><topic>NADPH Oxidases - metabolism</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxygen</topic><topic>Penicillin</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stimulation</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Rituraj</creatorcontrib><creatorcontrib>Basu Thakur, Poulami</creatorcontrib><creatorcontrib>Li, Shumin</creatorcontrib><creatorcontrib>Minard, Charles</creatorcontrib><creatorcontrib>Rodney, George G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Rituraj</au><au>Basu Thakur, Poulami</au><au>Li, Shumin</au><au>Minard, Charles</au><au>Rodney, George G</au><au>Ushio-Fukai, Masuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-05-21</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>e63989</spage><epage>e63989</epage><pages>e63989-e63989</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Production of reactive oxygen species (ROS) has been implicated in the pathology of many conditions, including cardiovascular, inflammatory and degenerative diseases, aging, muscular dystrophy, and muscle fatigue. NADPH oxidases (Nox) have recently gained attention as an important source of ROS involved in redox signaling. However, our knowledge of the source of ROS has been limited by the relatively impoverished array of tools available to study them and the limitations of all imaging probes to provide meaningful spatial resolution. By linking redox-sensitive GFP (roGFP) to the Nox organizer protein, p47(phox), we have developed a redox sensitive protein to specifically assess Nox activity (p47-roGFP). Stimulation of murine macrophages with endotoxin resulted in rapid, reversible oxidation of p47-roGFP. In murine skeletal muscle, both passive stretch and repetitive electrical stimulation resulted in oxidation of p47-roGFP. The oxidation of p47-roGFP in both macrophages and skeletal muscle was blocked by a Nox specific peptide inhibitor. Furthermore, expression of p47-roGFP in p47(phox) deficient cells restored Nox activity. As Nox has been linked to pathological redox signaling, our newly developed Nox biosensor will allow for the direct assessment of Nox activity and the development of therapeutic Nox inhibitors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23704967</pmid><doi>10.1371/journal.pone.0063989</doi><tpages>e63989</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-05, Vol.8 (5), p.e63989-e63989
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1353660070
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aging
Animals
Biology
Biophysics
Biosensing Techniques
Biosensors
Cell Survival - drug effects
Cloning
Computer Systems
Degenerative diseases
Deoxyribonucleic acid
DNA
Dystrophy
Electric Stimulation
Electrical stimuli
Extracellular Space - drug effects
Extracellular Space - metabolism
Fatigue
Fibroblasts
Fluorescence
Free radicals
Genes, Reporter
Green Fluorescent Proteins - metabolism
Humans
In Vitro Techniques
Journalists
Kinases
Laboratory animals
Lipopolysaccharides - pharmacology
Macrophage Activation - drug effects
Macrophages
Medicine
Membrane Glycoproteins - deficiency
Membrane Glycoproteins - metabolism
Mice
Mitochondria
Molecular Imaging - methods
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - enzymology
Muscles
Muscular dystrophy
Muscular fatigue
Musculoskeletal system
NAD(P)H oxidase
NADPH Oxidase 2
NADPH Oxidases - deficiency
NADPH Oxidases - metabolism
Oxidases
Oxidation
Oxidation-Reduction - drug effects
Oxygen
Penicillin
Physiology
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Signaling
Skeletal muscle
Spatial discrimination
Spatial resolution
Stimulation
Time Factors
title Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20imaging%20of%20NADPH%20oxidase%20activity%20in%20living%20cells%20using%20a%20novel%20fluorescent%20protein%20reporter&rft.jtitle=PloS%20one&rft.au=Pal,%20Rituraj&rft.date=2013-05-21&rft.volume=8&rft.issue=5&rft.spage=e63989&rft.epage=e63989&rft.pages=e63989-e63989&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0063989&rft_dat=%3Cgale_plos_%3EA478172910%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353660070&rft_id=info:pmid/23704967&rft_galeid=A478172910&rft_doaj_id=oai_doaj_org_article_96f3ccca316f4adcbeee789a67489652&rfr_iscdi=true