A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections
Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the po...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-05, Vol.8 (5), p.e62070-e62070 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e62070 |
---|---|
container_issue | 5 |
container_start_page | e62070 |
container_title | PloS one |
container_volume | 8 |
creator | Rexhepaj, Elton Agnarsdóttir, Margrét Bergman, Julia Edqvist, Per-Henrik Bergqvist, Michael Uhlén, Mathias Gallagher, William M Lundberg, Emma Ponten, Fredrik |
description | Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative.
Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157).
Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma. |
doi_str_mv | 10.1371/journal.pone.0062070 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1352840685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478240994</galeid><doaj_id>oai_doaj_org_article_0b0093dc71424933a9e09b0c9152cdd8</doaj_id><sourcerecordid>A478240994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</originalsourceid><addsrcrecordid>eNqNk21r1TAUx4sobk6_gWhAEAXvNU3aNHkjXObTYDDwYW9DkqZtZpvUJFX3HfzQpvfejVX2YvRFm9Pf-Z_kn3Oy7GkO1zmu8rcXbvJW9OvRWb2GkCBYwXvZYc4wWqUFvn_j-yB7FMIFhCWmhDzMDhAmDDJED7O_GxD1nzh5DaQIugajiFF7C7xWrrUmGmeBGEfvhOpAdKA2IRrbTiZ0YNC9sG4QoPFuANbZ1XVE6b4PwFjQJd4l0c71rjVK9CCaECYNBqOSqPfiEgSt5jrhcfagEX3QT_bvo-z7xw_fjj-vTs8-nRxvTleKVnlcIUk1lA0lCIlSVYSVBFe4VgJVUkIm6xLVjZCoaipdaCIllbRscp0jjIisET7Knu90x94Fvjcy8ByXiBaQ0DIRJzuiduKCj94Mwl9yJwzfBpxvufDRqF5zKCFkqXqVF6hgGAum0x6gYnmJVF3TpPVmpxV-63GSC7X35nyzVZsmnu4JMZLw1R3wYeI5ghDju_E_Ypf4oiDz4d_tDz_JQddK2-hFv0hb_rGm4637xTEpCSUsCbzaC3j3c9Ih8sGE-b6F1W7a2ogZrTCZ9_biP_R2s_dUK5KfxjYu1VWzKN8UFUUFZKxI1PoWKj21Tq2UhqAxKb5IeL1ISMzc6q2YQuAnX7_cnT07X7Ivb7CdFn3sguunbQsvwWIHpkYPwevm2uQc8nmGr9zg8wzz_QyntGc3L-g66Wpo8T9p20VI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352840685</pqid></control><display><type>article</type><title>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rexhepaj, Elton ; Agnarsdóttir, Margrét ; Bergman, Julia ; Edqvist, Per-Henrik ; Bergqvist, Michael ; Uhlén, Mathias ; Gallagher, William M ; Lundberg, Emma ; Ponten, Fredrik</creator><contributor>Schauber, Jürgen</contributor><creatorcontrib>Rexhepaj, Elton ; Agnarsdóttir, Margrét ; Bergman, Julia ; Edqvist, Per-Henrik ; Bergqvist, Michael ; Uhlén, Mathias ; Gallagher, William M ; Lundberg, Emma ; Ponten, Fredrik ; Schauber, Jürgen</creatorcontrib><description>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative.
Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157).
Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062070</identifier><identifier>PMID: 23690928</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Automation ; Bioindicators ; Bioinformatics ; Biology ; Biomarkers ; Breast cancer ; Cancer ; Classification ; Engineering ; Genetics ; Histopathology ; Humans ; Image Processing, Computer-Assisted ; Immunohistochemistry ; Immunohistochemistry - methods ; Laboratories ; MART-1 Antigen ; Medical imaging equipment ; Medical research ; Medicine ; Melanocytes ; Melanocytes - chemistry ; Melanoma ; Melanoma - diagnosis ; Microscopy ; Neural networks ; Pathology ; Pattern recognition ; Pattern Recognition, Automated - methods ; Protein expression ; Proteins ; Proteomics ; Sampling methods ; Science ; Signal transduction ; Skin cancer ; Surface Properties ; Target recognition ; Technology application ; Texture recognition ; Tissue Array Analysis - methods ; Veterinary Science</subject><ispartof>PloS one, 2013-05, Vol.8 (5), p.e62070-e62070</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Rexhepaj et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Rexhepaj et al 2013 Rexhepaj et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</citedby><cites>FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656869/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656869/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124462$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-120033$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-203296$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Schauber, Jürgen</contributor><creatorcontrib>Rexhepaj, Elton</creatorcontrib><creatorcontrib>Agnarsdóttir, Margrét</creatorcontrib><creatorcontrib>Bergman, Julia</creatorcontrib><creatorcontrib>Edqvist, Per-Henrik</creatorcontrib><creatorcontrib>Bergqvist, Michael</creatorcontrib><creatorcontrib>Uhlén, Mathias</creatorcontrib><creatorcontrib>Gallagher, William M</creatorcontrib><creatorcontrib>Lundberg, Emma</creatorcontrib><creatorcontrib>Ponten, Fredrik</creatorcontrib><title>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative.
Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157).
Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Bioindicators</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Classification</subject><subject>Engineering</subject><subject>Genetics</subject><subject>Histopathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>Immunohistochemistry - methods</subject><subject>Laboratories</subject><subject>MART-1 Antigen</subject><subject>Medical imaging equipment</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Melanocytes</subject><subject>Melanocytes - chemistry</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Microscopy</subject><subject>Neural networks</subject><subject>Pathology</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Sampling methods</subject><subject>Science</subject><subject>Signal transduction</subject><subject>Skin cancer</subject><subject>Surface Properties</subject><subject>Target recognition</subject><subject>Technology application</subject><subject>Texture recognition</subject><subject>Tissue Array Analysis - methods</subject><subject>Veterinary Science</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21r1TAUx4sobk6_gWhAEAXvNU3aNHkjXObTYDDwYW9DkqZtZpvUJFX3HfzQpvfejVX2YvRFm9Pf-Z_kn3Oy7GkO1zmu8rcXbvJW9OvRWb2GkCBYwXvZYc4wWqUFvn_j-yB7FMIFhCWmhDzMDhAmDDJED7O_GxD1nzh5DaQIugajiFF7C7xWrrUmGmeBGEfvhOpAdKA2IRrbTiZ0YNC9sG4QoPFuANbZ1XVE6b4PwFjQJd4l0c71rjVK9CCaECYNBqOSqPfiEgSt5jrhcfagEX3QT_bvo-z7xw_fjj-vTs8-nRxvTleKVnlcIUk1lA0lCIlSVYSVBFe4VgJVUkIm6xLVjZCoaipdaCIllbRscp0jjIisET7Knu90x94Fvjcy8ByXiBaQ0DIRJzuiduKCj94Mwl9yJwzfBpxvufDRqF5zKCFkqXqVF6hgGAum0x6gYnmJVF3TpPVmpxV-63GSC7X35nyzVZsmnu4JMZLw1R3wYeI5ghDju_E_Ypf4oiDz4d_tDz_JQddK2-hFv0hb_rGm4637xTEpCSUsCbzaC3j3c9Ih8sGE-b6F1W7a2ogZrTCZ9_biP_R2s_dUK5KfxjYu1VWzKN8UFUUFZKxI1PoWKj21Tq2UhqAxKb5IeL1ISMzc6q2YQuAnX7_cnT07X7Ivb7CdFn3sguunbQsvwWIHpkYPwevm2uQc8nmGr9zg8wzz_QyntGc3L-g66Wpo8T9p20VI</recordid><startdate>20130517</startdate><enddate>20130517</enddate><creator>Rexhepaj, Elton</creator><creator>Agnarsdóttir, Margrét</creator><creator>Bergman, Julia</creator><creator>Edqvist, Per-Henrik</creator><creator>Bergqvist, Michael</creator><creator>Uhlén, Mathias</creator><creator>Gallagher, William M</creator><creator>Lundberg, Emma</creator><creator>Ponten, Fredrik</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>D93</scope><scope>ACNBI</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20130517</creationdate><title>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</title><author>Rexhepaj, Elton ; Agnarsdóttir, Margrét ; Bergman, Julia ; Edqvist, Per-Henrik ; Bergqvist, Michael ; Uhlén, Mathias ; Gallagher, William M ; Lundberg, Emma ; Ponten, Fredrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Bioindicators</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Classification</topic><topic>Engineering</topic><topic>Genetics</topic><topic>Histopathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>Immunohistochemistry - methods</topic><topic>Laboratories</topic><topic>MART-1 Antigen</topic><topic>Medical imaging equipment</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Melanocytes</topic><topic>Melanocytes - chemistry</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Microscopy</topic><topic>Neural networks</topic><topic>Pathology</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Sampling methods</topic><topic>Science</topic><topic>Signal transduction</topic><topic>Skin cancer</topic><topic>Surface Properties</topic><topic>Target recognition</topic><topic>Technology application</topic><topic>Texture recognition</topic><topic>Tissue Array Analysis - methods</topic><topic>Veterinary Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rexhepaj, Elton</creatorcontrib><creatorcontrib>Agnarsdóttir, Margrét</creatorcontrib><creatorcontrib>Bergman, Julia</creatorcontrib><creatorcontrib>Edqvist, Per-Henrik</creatorcontrib><creatorcontrib>Bergqvist, Michael</creatorcontrib><creatorcontrib>Uhlén, Mathias</creatorcontrib><creatorcontrib>Gallagher, William M</creatorcontrib><creatorcontrib>Lundberg, Emma</creatorcontrib><creatorcontrib>Ponten, Fredrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rexhepaj, Elton</au><au>Agnarsdóttir, Margrét</au><au>Bergman, Julia</au><au>Edqvist, Per-Henrik</au><au>Bergqvist, Michael</au><au>Uhlén, Mathias</au><au>Gallagher, William M</au><au>Lundberg, Emma</au><au>Ponten, Fredrik</au><au>Schauber, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-05-17</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>e62070</spage><epage>e62070</epage><pages>e62070-e62070</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative.
Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157).
Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23690928</pmid><doi>10.1371/journal.pone.0062070</doi><tpages>e62070</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-05, Vol.8 (5), p.e62070-e62070 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1352840685 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Automation Bioindicators Bioinformatics Biology Biomarkers Breast cancer Cancer Classification Engineering Genetics Histopathology Humans Image Processing, Computer-Assisted Immunohistochemistry Immunohistochemistry - methods Laboratories MART-1 Antigen Medical imaging equipment Medical research Medicine Melanocytes Melanocytes - chemistry Melanoma Melanoma - diagnosis Microscopy Neural networks Pathology Pattern recognition Pattern Recognition, Automated - methods Protein expression Proteins Proteomics Sampling methods Science Signal transduction Skin cancer Surface Properties Target recognition Technology application Texture recognition Tissue Array Analysis - methods Veterinary Science |
title | A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20texture%20based%20pattern%20recognition%20approach%20to%20distinguish%20melanoma%20from%20non-melanoma%20cells%20in%20histopathological%20tissue%20microarray%20sections&rft.jtitle=PloS%20one&rft.au=Rexhepaj,%20Elton&rft.date=2013-05-17&rft.volume=8&rft.issue=5&rft.spage=e62070&rft.epage=e62070&rft.pages=e62070-e62070&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062070&rft_dat=%3Cgale_plos_%3EA478240994%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352840685&rft_id=info:pmid/23690928&rft_galeid=A478240994&rft_doaj_id=oai_doaj_org_article_0b0093dc71424933a9e09b0c9152cdd8&rfr_iscdi=true |