A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections

Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-05, Vol.8 (5), p.e62070-e62070
Hauptverfasser: Rexhepaj, Elton, Agnarsdóttir, Margrét, Bergman, Julia, Edqvist, Per-Henrik, Bergqvist, Michael, Uhlén, Mathias, Gallagher, William M, Lundberg, Emma, Ponten, Fredrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e62070
container_issue 5
container_start_page e62070
container_title PloS one
container_volume 8
creator Rexhepaj, Elton
Agnarsdóttir, Margrét
Bergman, Julia
Edqvist, Per-Henrik
Bergqvist, Michael
Uhlén, Mathias
Gallagher, William M
Lundberg, Emma
Ponten, Fredrik
description Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.
doi_str_mv 10.1371/journal.pone.0062070
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1352840685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478240994</galeid><doaj_id>oai_doaj_org_article_0b0093dc71424933a9e09b0c9152cdd8</doaj_id><sourcerecordid>A478240994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</originalsourceid><addsrcrecordid>eNqNk21r1TAUx4sobk6_gWhAEAXvNU3aNHkjXObTYDDwYW9DkqZtZpvUJFX3HfzQpvfejVX2YvRFm9Pf-Z_kn3Oy7GkO1zmu8rcXbvJW9OvRWb2GkCBYwXvZYc4wWqUFvn_j-yB7FMIFhCWmhDzMDhAmDDJED7O_GxD1nzh5DaQIugajiFF7C7xWrrUmGmeBGEfvhOpAdKA2IRrbTiZ0YNC9sG4QoPFuANbZ1XVE6b4PwFjQJd4l0c71rjVK9CCaECYNBqOSqPfiEgSt5jrhcfagEX3QT_bvo-z7xw_fjj-vTs8-nRxvTleKVnlcIUk1lA0lCIlSVYSVBFe4VgJVUkIm6xLVjZCoaipdaCIllbRscp0jjIisET7Knu90x94Fvjcy8ByXiBaQ0DIRJzuiduKCj94Mwl9yJwzfBpxvufDRqF5zKCFkqXqVF6hgGAum0x6gYnmJVF3TpPVmpxV-63GSC7X35nyzVZsmnu4JMZLw1R3wYeI5ghDju_E_Ypf4oiDz4d_tDz_JQddK2-hFv0hb_rGm4637xTEpCSUsCbzaC3j3c9Ih8sGE-b6F1W7a2ogZrTCZ9_biP_R2s_dUK5KfxjYu1VWzKN8UFUUFZKxI1PoWKj21Tq2UhqAxKb5IeL1ISMzc6q2YQuAnX7_cnT07X7Ivb7CdFn3sguunbQsvwWIHpkYPwevm2uQc8nmGr9zg8wzz_QyntGc3L-g66Wpo8T9p20VI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352840685</pqid></control><display><type>article</type><title>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rexhepaj, Elton ; Agnarsdóttir, Margrét ; Bergman, Julia ; Edqvist, Per-Henrik ; Bergqvist, Michael ; Uhlén, Mathias ; Gallagher, William M ; Lundberg, Emma ; Ponten, Fredrik</creator><contributor>Schauber, Jürgen</contributor><creatorcontrib>Rexhepaj, Elton ; Agnarsdóttir, Margrét ; Bergman, Julia ; Edqvist, Per-Henrik ; Bergqvist, Michael ; Uhlén, Mathias ; Gallagher, William M ; Lundberg, Emma ; Ponten, Fredrik ; Schauber, Jürgen</creatorcontrib><description>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062070</identifier><identifier>PMID: 23690928</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Automation ; Bioindicators ; Bioinformatics ; Biology ; Biomarkers ; Breast cancer ; Cancer ; Classification ; Engineering ; Genetics ; Histopathology ; Humans ; Image Processing, Computer-Assisted ; Immunohistochemistry ; Immunohistochemistry - methods ; Laboratories ; MART-1 Antigen ; Medical imaging equipment ; Medical research ; Medicine ; Melanocytes ; Melanocytes - chemistry ; Melanoma ; Melanoma - diagnosis ; Microscopy ; Neural networks ; Pathology ; Pattern recognition ; Pattern Recognition, Automated - methods ; Protein expression ; Proteins ; Proteomics ; Sampling methods ; Science ; Signal transduction ; Skin cancer ; Surface Properties ; Target recognition ; Technology application ; Texture recognition ; Tissue Array Analysis - methods ; Veterinary Science</subject><ispartof>PloS one, 2013-05, Vol.8 (5), p.e62070-e62070</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Rexhepaj et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Rexhepaj et al 2013 Rexhepaj et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</citedby><cites>FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656869/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656869/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124462$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-120033$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-203296$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Schauber, Jürgen</contributor><creatorcontrib>Rexhepaj, Elton</creatorcontrib><creatorcontrib>Agnarsdóttir, Margrét</creatorcontrib><creatorcontrib>Bergman, Julia</creatorcontrib><creatorcontrib>Edqvist, Per-Henrik</creatorcontrib><creatorcontrib>Bergqvist, Michael</creatorcontrib><creatorcontrib>Uhlén, Mathias</creatorcontrib><creatorcontrib>Gallagher, William M</creatorcontrib><creatorcontrib>Lundberg, Emma</creatorcontrib><creatorcontrib>Ponten, Fredrik</creatorcontrib><title>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Bioindicators</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Classification</subject><subject>Engineering</subject><subject>Genetics</subject><subject>Histopathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>Immunohistochemistry - methods</subject><subject>Laboratories</subject><subject>MART-1 Antigen</subject><subject>Medical imaging equipment</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Melanocytes</subject><subject>Melanocytes - chemistry</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Microscopy</subject><subject>Neural networks</subject><subject>Pathology</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Sampling methods</subject><subject>Science</subject><subject>Signal transduction</subject><subject>Skin cancer</subject><subject>Surface Properties</subject><subject>Target recognition</subject><subject>Technology application</subject><subject>Texture recognition</subject><subject>Tissue Array Analysis - methods</subject><subject>Veterinary Science</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21r1TAUx4sobk6_gWhAEAXvNU3aNHkjXObTYDDwYW9DkqZtZpvUJFX3HfzQpvfejVX2YvRFm9Pf-Z_kn3Oy7GkO1zmu8rcXbvJW9OvRWb2GkCBYwXvZYc4wWqUFvn_j-yB7FMIFhCWmhDzMDhAmDDJED7O_GxD1nzh5DaQIugajiFF7C7xWrrUmGmeBGEfvhOpAdKA2IRrbTiZ0YNC9sG4QoPFuANbZ1XVE6b4PwFjQJd4l0c71rjVK9CCaECYNBqOSqPfiEgSt5jrhcfagEX3QT_bvo-z7xw_fjj-vTs8-nRxvTleKVnlcIUk1lA0lCIlSVYSVBFe4VgJVUkIm6xLVjZCoaipdaCIllbRscp0jjIisET7Knu90x94Fvjcy8ByXiBaQ0DIRJzuiduKCj94Mwl9yJwzfBpxvufDRqF5zKCFkqXqVF6hgGAum0x6gYnmJVF3TpPVmpxV-63GSC7X35nyzVZsmnu4JMZLw1R3wYeI5ghDju_E_Ypf4oiDz4d_tDz_JQddK2-hFv0hb_rGm4637xTEpCSUsCbzaC3j3c9Ih8sGE-b6F1W7a2ogZrTCZ9_biP_R2s_dUK5KfxjYu1VWzKN8UFUUFZKxI1PoWKj21Tq2UhqAxKb5IeL1ISMzc6q2YQuAnX7_cnT07X7Ivb7CdFn3sguunbQsvwWIHpkYPwevm2uQc8nmGr9zg8wzz_QyntGc3L-g66Wpo8T9p20VI</recordid><startdate>20130517</startdate><enddate>20130517</enddate><creator>Rexhepaj, Elton</creator><creator>Agnarsdóttir, Margrét</creator><creator>Bergman, Julia</creator><creator>Edqvist, Per-Henrik</creator><creator>Bergqvist, Michael</creator><creator>Uhlén, Mathias</creator><creator>Gallagher, William M</creator><creator>Lundberg, Emma</creator><creator>Ponten, Fredrik</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>D93</scope><scope>ACNBI</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20130517</creationdate><title>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</title><author>Rexhepaj, Elton ; Agnarsdóttir, Margrét ; Bergman, Julia ; Edqvist, Per-Henrik ; Bergqvist, Michael ; Uhlén, Mathias ; Gallagher, William M ; Lundberg, Emma ; Ponten, Fredrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c871t-2b8e0bf8622a5c76956373dca27bb09bd52dfab27f7e4e6bb8b85f1e12326bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Bioindicators</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Classification</topic><topic>Engineering</topic><topic>Genetics</topic><topic>Histopathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>Immunohistochemistry - methods</topic><topic>Laboratories</topic><topic>MART-1 Antigen</topic><topic>Medical imaging equipment</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Melanocytes</topic><topic>Melanocytes - chemistry</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Microscopy</topic><topic>Neural networks</topic><topic>Pathology</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Sampling methods</topic><topic>Science</topic><topic>Signal transduction</topic><topic>Skin cancer</topic><topic>Surface Properties</topic><topic>Target recognition</topic><topic>Technology application</topic><topic>Texture recognition</topic><topic>Tissue Array Analysis - methods</topic><topic>Veterinary Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rexhepaj, Elton</creatorcontrib><creatorcontrib>Agnarsdóttir, Margrét</creatorcontrib><creatorcontrib>Bergman, Julia</creatorcontrib><creatorcontrib>Edqvist, Per-Henrik</creatorcontrib><creatorcontrib>Bergqvist, Michael</creatorcontrib><creatorcontrib>Uhlén, Mathias</creatorcontrib><creatorcontrib>Gallagher, William M</creatorcontrib><creatorcontrib>Lundberg, Emma</creatorcontrib><creatorcontrib>Ponten, Fredrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rexhepaj, Elton</au><au>Agnarsdóttir, Margrét</au><au>Bergman, Julia</au><au>Edqvist, Per-Henrik</au><au>Bergqvist, Michael</au><au>Uhlén, Mathias</au><au>Gallagher, William M</au><au>Lundberg, Emma</au><au>Ponten, Fredrik</au><au>Schauber, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-05-17</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>e62070</spage><epage>e62070</epage><pages>e62070-e62070</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23690928</pmid><doi>10.1371/journal.pone.0062070</doi><tpages>e62070</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-05, Vol.8 (5), p.e62070-e62070
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1352840685
source MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Automation
Bioindicators
Bioinformatics
Biology
Biomarkers
Breast cancer
Cancer
Classification
Engineering
Genetics
Histopathology
Humans
Image Processing, Computer-Assisted
Immunohistochemistry
Immunohistochemistry - methods
Laboratories
MART-1 Antigen
Medical imaging equipment
Medical research
Medicine
Melanocytes
Melanocytes - chemistry
Melanoma
Melanoma - diagnosis
Microscopy
Neural networks
Pathology
Pattern recognition
Pattern Recognition, Automated - methods
Protein expression
Proteins
Proteomics
Sampling methods
Science
Signal transduction
Skin cancer
Surface Properties
Target recognition
Technology application
Texture recognition
Tissue Array Analysis - methods
Veterinary Science
title A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20texture%20based%20pattern%20recognition%20approach%20to%20distinguish%20melanoma%20from%20non-melanoma%20cells%20in%20histopathological%20tissue%20microarray%20sections&rft.jtitle=PloS%20one&rft.au=Rexhepaj,%20Elton&rft.date=2013-05-17&rft.volume=8&rft.issue=5&rft.spage=e62070&rft.epage=e62070&rft.pages=e62070-e62070&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062070&rft_dat=%3Cgale_plos_%3EA478240994%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352840685&rft_id=info:pmid/23690928&rft_galeid=A478240994&rft_doaj_id=oai_doaj_org_article_0b0093dc71424933a9e09b0c9152cdd8&rfr_iscdi=true