Human germline antibody gene segments encode polyspecific antibodies

Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-04, Vol.9 (4), p.e1003045-e1003045
Hauptverfasser: Willis, Jordan R, Briney, Bryan S, DeLuca, Samuel L, Crowe, Jr, James E, Meiler, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003045
container_issue 4
container_start_page e1003045
container_title PLoS computational biology
container_volume 9
creator Willis, Jordan R
Briney, Bryan S
DeLuca, Samuel L
Crowe, Jr, James E
Meiler, Jens
description Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.
doi_str_mv 10.1371/journal.pcbi.1003045
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351877568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332379502</galeid><doaj_id>oai_doaj_org_article_d1144f8b135244d290964927cdbc7e3e</doaj_id><sourcerecordid>A332379502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D0QHvNGLGfPZNDfCsn7swKLgx3VIk9OaoU1mk1acf2_qdJYteCOFtD153jfJm1MUzzHaYCrw210Yo9fdZm9qt8EIUcT4g-Icc07XgvLq4b3vs-JJSrvM8EqWj4szQksquETnxfvrsdd-1ULsO-dhpf3g6mAPuZL_ErQ9-CGtwJtgYbUP3SHtwbjGmRPqID0tHjW6S_Bsfl8UPz5--H51vb758ml7dXmzNqWUQx4FtpRzpJFBUuf1a1lhXdYUNFhdc4QbVBICtCkxb1BdCWLFdDLEJbGIXhQvj777LiQ1B5AUphxXQvCyysT2SNigd2ofXa_jQQXt1N9CiK3ScXCmA2UxZqyp6qwmjFkikSyZJMLY2gigkL3ezauNdQ_W5CCi7hamyxnvfqo2_FI53BJVIhu8ng1iuB0hDap3yUDXaQ9hnPbNKiYlIySjr45oq_PWnG9CdjQTri4pJVRIjiZq8w8qPxZ6Z4KHxuX6QvBmIcjMAL-HVo8pqe23r__Bfl6y7MiaGFKK0NylgpGauvN0OWrqTjV3Z5a9uJ_onejUjvQPZYzfSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348499422</pqid></control><display><type>article</type><title>Human germline antibody gene segments encode polyspecific antibodies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Willis, Jordan R ; Briney, Bryan S ; DeLuca, Samuel L ; Crowe, Jr, James E ; Meiler, Jens</creator><contributor>Peters, Bjoern</contributor><creatorcontrib>Willis, Jordan R ; Briney, Bryan S ; DeLuca, Samuel L ; Crowe, Jr, James E ; Meiler, Jens ; Peters, Bjoern</creatorcontrib><description>Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003045</identifier><identifier>PMID: 23637590</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino acids ; Amino Acids - chemistry ; Antibodies ; Antibodies - chemistry ; Antigen-Antibody Complex - chemistry ; Antigens - chemistry ; Biology ; Chemistry ; Computational Biology - methods ; Computer Simulation ; Dosage and administration ; Epitopes - chemistry ; Gene expression ; Genes, Immunoglobulin ; Genetic aspects ; Genetic engineering ; Humans ; Mutation ; Pharmacogenetics ; Programming Languages ; Protein Binding ; Protein Conformation ; Proteins ; Software ; Viral antibodies</subject><ispartof>PLoS computational biology, 2013-04, Vol.9 (4), p.e1003045-e1003045</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Willis et al 2013 Willis et al</rights><rights>2013 Willis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Willis JR, Briney BS, DeLuca SL, Crowe JE Jr, Meiler J (2013) Human Germline Antibody Gene Segments Encode Polyspecific Antibodies. PLoS Comput Biol 9(4): e1003045. doi:10.1371/journal.pcbi.1003045</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</citedby><cites>FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23637590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Peters, Bjoern</contributor><creatorcontrib>Willis, Jordan R</creatorcontrib><creatorcontrib>Briney, Bryan S</creatorcontrib><creatorcontrib>DeLuca, Samuel L</creatorcontrib><creatorcontrib>Crowe, Jr, James E</creatorcontrib><creatorcontrib>Meiler, Jens</creatorcontrib><title>Human germline antibody gene segments encode polyspecific antibodies</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Antibodies</subject><subject>Antibodies - chemistry</subject><subject>Antigen-Antibody Complex - chemistry</subject><subject>Antigens - chemistry</subject><subject>Biology</subject><subject>Chemistry</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Dosage and administration</subject><subject>Epitopes - chemistry</subject><subject>Gene expression</subject><subject>Genes, Immunoglobulin</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Mutation</subject><subject>Pharmacogenetics</subject><subject>Programming Languages</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Software</subject><subject>Viral antibodies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D0QHvNGLGfPZNDfCsn7swKLgx3VIk9OaoU1mk1acf2_qdJYteCOFtD153jfJm1MUzzHaYCrw210Yo9fdZm9qt8EIUcT4g-Icc07XgvLq4b3vs-JJSrvM8EqWj4szQksquETnxfvrsdd-1ULsO-dhpf3g6mAPuZL_ErQ9-CGtwJtgYbUP3SHtwbjGmRPqID0tHjW6S_Bsfl8UPz5--H51vb758ml7dXmzNqWUQx4FtpRzpJFBUuf1a1lhXdYUNFhdc4QbVBICtCkxb1BdCWLFdDLEJbGIXhQvj777LiQ1B5AUphxXQvCyysT2SNigd2ofXa_jQQXt1N9CiK3ScXCmA2UxZqyp6qwmjFkikSyZJMLY2gigkL3ezauNdQ_W5CCi7hamyxnvfqo2_FI53BJVIhu8ng1iuB0hDap3yUDXaQ9hnPbNKiYlIySjr45oq_PWnG9CdjQTri4pJVRIjiZq8w8qPxZ6Z4KHxuX6QvBmIcjMAL-HVo8pqe23r__Bfl6y7MiaGFKK0NylgpGauvN0OWrqTjV3Z5a9uJ_onejUjvQPZYzfSw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Willis, Jordan R</creator><creator>Briney, Bryan S</creator><creator>DeLuca, Samuel L</creator><creator>Crowe, Jr, James E</creator><creator>Meiler, Jens</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130401</creationdate><title>Human germline antibody gene segments encode polyspecific antibodies</title><author>Willis, Jordan R ; Briney, Bryan S ; DeLuca, Samuel L ; Crowe, Jr, James E ; Meiler, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Antibodies</topic><topic>Antibodies - chemistry</topic><topic>Antigen-Antibody Complex - chemistry</topic><topic>Antigens - chemistry</topic><topic>Biology</topic><topic>Chemistry</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Dosage and administration</topic><topic>Epitopes - chemistry</topic><topic>Gene expression</topic><topic>Genes, Immunoglobulin</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Mutation</topic><topic>Pharmacogenetics</topic><topic>Programming Languages</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Software</topic><topic>Viral antibodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willis, Jordan R</creatorcontrib><creatorcontrib>Briney, Bryan S</creatorcontrib><creatorcontrib>DeLuca, Samuel L</creatorcontrib><creatorcontrib>Crowe, Jr, James E</creatorcontrib><creatorcontrib>Meiler, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willis, Jordan R</au><au>Briney, Bryan S</au><au>DeLuca, Samuel L</au><au>Crowe, Jr, James E</au><au>Meiler, Jens</au><au>Peters, Bjoern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human germline antibody gene segments encode polyspecific antibodies</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>9</volume><issue>4</issue><spage>e1003045</spage><epage>e1003045</epage><pages>e1003045-e1003045</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23637590</pmid><doi>10.1371/journal.pcbi.1003045</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-04, Vol.9 (4), p.e1003045-e1003045
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1351877568
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Algorithms
Amino acids
Amino Acids - chemistry
Antibodies
Antibodies - chemistry
Antigen-Antibody Complex - chemistry
Antigens - chemistry
Biology
Chemistry
Computational Biology - methods
Computer Simulation
Dosage and administration
Epitopes - chemistry
Gene expression
Genes, Immunoglobulin
Genetic aspects
Genetic engineering
Humans
Mutation
Pharmacogenetics
Programming Languages
Protein Binding
Protein Conformation
Proteins
Software
Viral antibodies
title Human germline antibody gene segments encode polyspecific antibodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20germline%20antibody%20gene%20segments%20encode%20polyspecific%20antibodies&rft.jtitle=PLoS%20computational%20biology&rft.au=Willis,%20Jordan%20R&rft.date=2013-04-01&rft.volume=9&rft.issue=4&rft.spage=e1003045&rft.epage=e1003045&rft.pages=e1003045-e1003045&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003045&rft_dat=%3Cgale_plos_%3EA332379502%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348499422&rft_id=info:pmid/23637590&rft_galeid=A332379502&rft_doaj_id=oai_doaj_org_article_d1144f8b135244d290964927cdbc7e3e&rfr_iscdi=true