Human germline antibody gene segments encode polyspecific antibodies
Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2013-04, Vol.9 (4), p.e1003045-e1003045 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003045 |
---|---|
container_issue | 4 |
container_start_page | e1003045 |
container_title | PLoS computational biology |
container_volume | 9 |
creator | Willis, Jordan R Briney, Bryan S DeLuca, Samuel L Crowe, Jr, James E Meiler, Jens |
description | Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding. |
doi_str_mv | 10.1371/journal.pcbi.1003045 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351877568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332379502</galeid><doaj_id>oai_doaj_org_article_d1144f8b135244d290964927cdbc7e3e</doaj_id><sourcerecordid>A332379502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D0QHvNGLGfPZNDfCsn7swKLgx3VIk9OaoU1mk1acf2_qdJYteCOFtD153jfJm1MUzzHaYCrw210Yo9fdZm9qt8EIUcT4g-Icc07XgvLq4b3vs-JJSrvM8EqWj4szQksquETnxfvrsdd-1ULsO-dhpf3g6mAPuZL_ErQ9-CGtwJtgYbUP3SHtwbjGmRPqID0tHjW6S_Bsfl8UPz5--H51vb758ml7dXmzNqWUQx4FtpRzpJFBUuf1a1lhXdYUNFhdc4QbVBICtCkxb1BdCWLFdDLEJbGIXhQvj777LiQ1B5AUphxXQvCyysT2SNigd2ofXa_jQQXt1N9CiK3ScXCmA2UxZqyp6qwmjFkikSyZJMLY2gigkL3ezauNdQ_W5CCi7hamyxnvfqo2_FI53BJVIhu8ng1iuB0hDap3yUDXaQ9hnPbNKiYlIySjr45oq_PWnG9CdjQTri4pJVRIjiZq8w8qPxZ6Z4KHxuX6QvBmIcjMAL-HVo8pqe23r__Bfl6y7MiaGFKK0NylgpGauvN0OWrqTjV3Z5a9uJ_onejUjvQPZYzfSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348499422</pqid></control><display><type>article</type><title>Human germline antibody gene segments encode polyspecific antibodies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Willis, Jordan R ; Briney, Bryan S ; DeLuca, Samuel L ; Crowe, Jr, James E ; Meiler, Jens</creator><contributor>Peters, Bjoern</contributor><creatorcontrib>Willis, Jordan R ; Briney, Bryan S ; DeLuca, Samuel L ; Crowe, Jr, James E ; Meiler, Jens ; Peters, Bjoern</creatorcontrib><description>Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003045</identifier><identifier>PMID: 23637590</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino acids ; Amino Acids - chemistry ; Antibodies ; Antibodies - chemistry ; Antigen-Antibody Complex - chemistry ; Antigens - chemistry ; Biology ; Chemistry ; Computational Biology - methods ; Computer Simulation ; Dosage and administration ; Epitopes - chemistry ; Gene expression ; Genes, Immunoglobulin ; Genetic aspects ; Genetic engineering ; Humans ; Mutation ; Pharmacogenetics ; Programming Languages ; Protein Binding ; Protein Conformation ; Proteins ; Software ; Viral antibodies</subject><ispartof>PLoS computational biology, 2013-04, Vol.9 (4), p.e1003045-e1003045</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Willis et al 2013 Willis et al</rights><rights>2013 Willis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Willis JR, Briney BS, DeLuca SL, Crowe JE Jr, Meiler J (2013) Human Germline Antibody Gene Segments Encode Polyspecific Antibodies. PLoS Comput Biol 9(4): e1003045. doi:10.1371/journal.pcbi.1003045</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</citedby><cites>FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23637590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Peters, Bjoern</contributor><creatorcontrib>Willis, Jordan R</creatorcontrib><creatorcontrib>Briney, Bryan S</creatorcontrib><creatorcontrib>DeLuca, Samuel L</creatorcontrib><creatorcontrib>Crowe, Jr, James E</creatorcontrib><creatorcontrib>Meiler, Jens</creatorcontrib><title>Human germline antibody gene segments encode polyspecific antibodies</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids - chemistry</subject><subject>Antibodies</subject><subject>Antibodies - chemistry</subject><subject>Antigen-Antibody Complex - chemistry</subject><subject>Antigens - chemistry</subject><subject>Biology</subject><subject>Chemistry</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Dosage and administration</subject><subject>Epitopes - chemistry</subject><subject>Gene expression</subject><subject>Genes, Immunoglobulin</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Mutation</subject><subject>Pharmacogenetics</subject><subject>Programming Languages</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Software</subject><subject>Viral antibodies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D0QHvNGLGfPZNDfCsn7swKLgx3VIk9OaoU1mk1acf2_qdJYteCOFtD153jfJm1MUzzHaYCrw210Yo9fdZm9qt8EIUcT4g-Icc07XgvLq4b3vs-JJSrvM8EqWj4szQksquETnxfvrsdd-1ULsO-dhpf3g6mAPuZL_ErQ9-CGtwJtgYbUP3SHtwbjGmRPqID0tHjW6S_Bsfl8UPz5--H51vb758ml7dXmzNqWUQx4FtpRzpJFBUuf1a1lhXdYUNFhdc4QbVBICtCkxb1BdCWLFdDLEJbGIXhQvj777LiQ1B5AUphxXQvCyysT2SNigd2ofXa_jQQXt1N9CiK3ScXCmA2UxZqyp6qwmjFkikSyZJMLY2gigkL3ezauNdQ_W5CCi7hamyxnvfqo2_FI53BJVIhu8ng1iuB0hDap3yUDXaQ9hnPbNKiYlIySjr45oq_PWnG9CdjQTri4pJVRIjiZq8w8qPxZ6Z4KHxuX6QvBmIcjMAL-HVo8pqe23r__Bfl6y7MiaGFKK0NylgpGauvN0OWrqTjV3Z5a9uJ_onejUjvQPZYzfSw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Willis, Jordan R</creator><creator>Briney, Bryan S</creator><creator>DeLuca, Samuel L</creator><creator>Crowe, Jr, James E</creator><creator>Meiler, Jens</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130401</creationdate><title>Human germline antibody gene segments encode polyspecific antibodies</title><author>Willis, Jordan R ; Briney, Bryan S ; DeLuca, Samuel L ; Crowe, Jr, James E ; Meiler, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-c671d3550a0c09a590b981a6b3eaedab501f0622e3f615f0b872d700300592d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids - chemistry</topic><topic>Antibodies</topic><topic>Antibodies - chemistry</topic><topic>Antigen-Antibody Complex - chemistry</topic><topic>Antigens - chemistry</topic><topic>Biology</topic><topic>Chemistry</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Dosage and administration</topic><topic>Epitopes - chemistry</topic><topic>Gene expression</topic><topic>Genes, Immunoglobulin</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Mutation</topic><topic>Pharmacogenetics</topic><topic>Programming Languages</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Software</topic><topic>Viral antibodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willis, Jordan R</creatorcontrib><creatorcontrib>Briney, Bryan S</creatorcontrib><creatorcontrib>DeLuca, Samuel L</creatorcontrib><creatorcontrib>Crowe, Jr, James E</creatorcontrib><creatorcontrib>Meiler, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willis, Jordan R</au><au>Briney, Bryan S</au><au>DeLuca, Samuel L</au><au>Crowe, Jr, James E</au><au>Meiler, Jens</au><au>Peters, Bjoern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human germline antibody gene segments encode polyspecific antibodies</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>9</volume><issue>4</issue><spage>e1003045</spage><epage>e1003045</epage><pages>e1003045-e1003045</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23637590</pmid><doi>10.1371/journal.pcbi.1003045</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2013-04, Vol.9 (4), p.e1003045-e1003045 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1351877568 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Algorithms Amino acids Amino Acids - chemistry Antibodies Antibodies - chemistry Antigen-Antibody Complex - chemistry Antigens - chemistry Biology Chemistry Computational Biology - methods Computer Simulation Dosage and administration Epitopes - chemistry Gene expression Genes, Immunoglobulin Genetic aspects Genetic engineering Humans Mutation Pharmacogenetics Programming Languages Protein Binding Protein Conformation Proteins Software Viral antibodies |
title | Human germline antibody gene segments encode polyspecific antibodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20germline%20antibody%20gene%20segments%20encode%20polyspecific%20antibodies&rft.jtitle=PLoS%20computational%20biology&rft.au=Willis,%20Jordan%20R&rft.date=2013-04-01&rft.volume=9&rft.issue=4&rft.spage=e1003045&rft.epage=e1003045&rft.pages=e1003045-e1003045&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003045&rft_dat=%3Cgale_plos_%3EA332379502%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348499422&rft_id=info:pmid/23637590&rft_galeid=A332379502&rft_doaj_id=oai_doaj_org_article_d1144f8b135244d290964927cdbc7e3e&rfr_iscdi=true |