Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity

The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-04, Vol.9 (4), p.e1003037-e1003037
Hauptverfasser: Nessler, Bernhard, Pfeiffer, Michael, Buesing, Lars, Maass, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003037
container_issue 4
container_start_page e1003037
container_title PLoS computational biology
container_volume 9
creator Nessler, Bernhard
Pfeiffer, Michael
Buesing, Lars
Maass, Wolfgang
description The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex.
doi_str_mv 10.1371/journal.pcbi.1003037
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351877241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332379498</galeid><doaj_id>oai_doaj_org_article_79431ec7b4384b8db8731574949f8579</doaj_id><sourcerecordid>A332379498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-9bef6e9fae63d3b206a313df4a54404b72a81c4cedcd76261421c323625548cd3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxDkCIcscezE9gWpVAVWqkDi42w5ziTrJbGD7aDuv2eW3VbdI_LB1viZ1zPjN8teknJFKCfvtn4JTo-r2bR2RcqSlpQ_ys5JXdOC01o8fnA-y57FuEWmFrJ5mp1VtKFUMnKebT7oHUSrXW78NC9JJ-tdDhOEAWJuXT6Ag2ANXodkjR7zyZrgjQ1msSnmaRP8MmzyONtfUCQ7WTcUHczgOnApn0cdMc2m3fPsSa_HCC-O-0X28-P1j6vPxc3XT-ury5vCNJykQrbQNyB7DQ3taFuVjaaEdj3TNWMla3mlBTHMQGc63lQNYRUxFPup6poJ09GL7PVBdx59VMchRUVoTQTnFSNIrA9E5_VWzcFOOuyU11b9C_gwKL3vdQTFJaMEDG8ZFawVXSs4JTVnksle1Fyi1vvja0s7YU3Yc9DjiejpjbMbNfg_Cj-gKSuBAm-OAsH_XiAmNdloYBy1A7_s62acCylJg-jqgA4aS7Ou96hocHWAf-Id9BbjlxSngXXLvfbbkwRkEtymQS8xqvX3b__Bfjll2YFFI8QYoL_vl5Rq7827sau9N9XRm5j26uGs7pPuzEj_AhuR4pw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347789916</pqid></control><display><type>article</type><title>Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Nessler, Bernhard ; Pfeiffer, Michael ; Buesing, Lars ; Maass, Wolfgang</creator><contributor>Sporns, Olaf</contributor><creatorcontrib>Nessler, Bernhard ; Pfeiffer, Michael ; Buesing, Lars ; Maass, Wolfgang ; Sporns, Olaf</creatorcontrib><description>The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003037</identifier><identifier>PMID: 23633941</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Animals ; Bayes Theorem ; Bayesian statistical decision theory ; Biology ; Brain - physiology ; Computational biology ; Computational Biology - methods ; Computer Simulation ; Experiments ; Humans ; Models, Neurological ; Nerve Net - physiology ; Neural circuitry ; Neural networks ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Neuroplasticity ; Physiological aspects ; Probability ; Studies ; Synapses - physiology ; Synaptic Transmission - physiology</subject><ispartof>PLoS computational biology, 2013-04, Vol.9 (4), p.e1003037-e1003037</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Nessler et al 2013 Nessler et al</rights><rights>2013 Nessler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nessler B, Pfeiffer M, Buesing L, Maass W (2013) Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity. PLoS Comput Biol 9(4): e1003037. doi:10.1371/journal.pcbi.1003037</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-9bef6e9fae63d3b206a313df4a54404b72a81c4cedcd76261421c323625548cd3</citedby><cites>FETCH-LOGICAL-c671t-9bef6e9fae63d3b206a313df4a54404b72a81c4cedcd76261421c323625548cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636028/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636028/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23633941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sporns, Olaf</contributor><creatorcontrib>Nessler, Bernhard</creatorcontrib><creatorcontrib>Pfeiffer, Michael</creatorcontrib><creatorcontrib>Buesing, Lars</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><title>Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian statistical decision theory</subject><subject>Biology</subject><subject>Brain - physiology</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Experiments</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroplasticity</subject><subject>Physiological aspects</subject><subject>Probability</subject><subject>Studies</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxDkCIcscezE9gWpVAVWqkDi42w5ziTrJbGD7aDuv2eW3VbdI_LB1viZ1zPjN8teknJFKCfvtn4JTo-r2bR2RcqSlpQ_ys5JXdOC01o8fnA-y57FuEWmFrJ5mp1VtKFUMnKebT7oHUSrXW78NC9JJ-tdDhOEAWJuXT6Ag2ANXodkjR7zyZrgjQ1msSnmaRP8MmzyONtfUCQ7WTcUHczgOnApn0cdMc2m3fPsSa_HCC-O-0X28-P1j6vPxc3XT-ury5vCNJykQrbQNyB7DQ3taFuVjaaEdj3TNWMla3mlBTHMQGc63lQNYRUxFPup6poJ09GL7PVBdx59VMchRUVoTQTnFSNIrA9E5_VWzcFOOuyU11b9C_gwKL3vdQTFJaMEDG8ZFawVXSs4JTVnksle1Fyi1vvja0s7YU3Yc9DjiejpjbMbNfg_Cj-gKSuBAm-OAsH_XiAmNdloYBy1A7_s62acCylJg-jqgA4aS7Ou96hocHWAf-Id9BbjlxSngXXLvfbbkwRkEtymQS8xqvX3b__Bfjll2YFFI8QYoL_vl5Rq7827sau9N9XRm5j26uGs7pPuzEj_AhuR4pw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Nessler, Bernhard</creator><creator>Pfeiffer, Michael</creator><creator>Buesing, Lars</creator><creator>Maass, Wolfgang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130401</creationdate><title>Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity</title><author>Nessler, Bernhard ; Pfeiffer, Michael ; Buesing, Lars ; Maass, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-9bef6e9fae63d3b206a313df4a54404b72a81c4cedcd76261421c323625548cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian statistical decision theory</topic><topic>Biology</topic><topic>Brain - physiology</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Experiments</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroplasticity</topic><topic>Physiological aspects</topic><topic>Probability</topic><topic>Studies</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nessler, Bernhard</creatorcontrib><creatorcontrib>Pfeiffer, Michael</creatorcontrib><creatorcontrib>Buesing, Lars</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nessler, Bernhard</au><au>Pfeiffer, Michael</au><au>Buesing, Lars</au><au>Maass, Wolfgang</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>9</volume><issue>4</issue><spage>e1003037</spage><epage>e1003037</epage><pages>e1003037-e1003037</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23633941</pmid><doi>10.1371/journal.pcbi.1003037</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-04, Vol.9 (4), p.e1003037-e1003037
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1351877241
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Action Potentials - physiology
Animals
Bayes Theorem
Bayesian statistical decision theory
Biology
Brain - physiology
Computational biology
Computational Biology - methods
Computer Simulation
Experiments
Humans
Models, Neurological
Nerve Net - physiology
Neural circuitry
Neural networks
Neuronal Plasticity - physiology
Neurons
Neurons - physiology
Neuroplasticity
Physiological aspects
Probability
Studies
Synapses - physiology
Synaptic Transmission - physiology
title Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20computation%20emerges%20in%20generic%20cortical%20microcircuits%20through%20spike-timing-dependent%20plasticity&rft.jtitle=PLoS%20computational%20biology&rft.au=Nessler,%20Bernhard&rft.date=2013-04-01&rft.volume=9&rft.issue=4&rft.spage=e1003037&rft.epage=e1003037&rft.pages=e1003037-e1003037&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003037&rft_dat=%3Cgale_plos_%3EA332379498%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347789916&rft_id=info:pmid/23633941&rft_galeid=A332379498&rft_doaj_id=oai_doaj_org_article_79431ec7b4384b8db8731574949f8579&rfr_iscdi=true