Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level

Emergence of arboviruses could result from their ability to exploit new environments, for example a new host. This ability is facilitated by the high mutation rate occurring during viral genome replication. The last emergence of chikungunya in the Indian Ocean region corroborates this statement sinc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-02, Vol.8 (2), p.e57548-e57548
Hauptverfasser: Arias-Goeta, Camilo, Mousson, Laurence, Rougeon, François, Failloux, Anna-Bella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e57548
container_issue 2
container_start_page e57548
container_title PloS one
container_volume 8
creator Arias-Goeta, Camilo
Mousson, Laurence
Rougeon, François
Failloux, Anna-Bella
description Emergence of arboviruses could result from their ability to exploit new environments, for example a new host. This ability is facilitated by the high mutation rate occurring during viral genome replication. The last emergence of chikungunya in the Indian Ocean region corroborates this statement since a single viral mutation at the position 226 on the E1 glycoprotein (E1-A226V) was associated with enhanced transmission by the mosquito Aedes albopictus in regions where the major mosquito vector, Aedes aegypti, is absent.We used direct competition assays in vivo to dissect out the mechanisms underlying the selection of E1-226V by Ae. albopictus. When the original variant E1-226A and the newly emerged E1-226V were provided in the same blood-meal at equal titers to both species of mosquitoes, we found that the proportion of both variants was drastically different in the two mosquito species. Following ingestion of the infectious blood-meal, the E1-226V variant was preferentially selected in Ae. albopictus, whereas the E1-226A variant was sometimes favored in Ae. aegypti. Interestingly, when the two variants were introduced into the mosquitoes by intrathoracic inoculations, E1-226V was no longer favored for dissemination and transmission in Ae. albopictus, showing that the midgut barrier plays a key role in E1-226V selection.This study sheds light on the role of the midgut barrier in the selection of novel arbovirus emerging variants. We also bring new insight into how the pre-existing variant E1-226V was selected among other viral variants including E1-226A. Indeed the E1-226V variant present at low levels in natural viral populations could rapidly emerge after being selected in Ae. albopictus at the midgut barrier level.
doi_str_mv 10.1371/journal.pone.0057548
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351359201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478182564</galeid><doaj_id>oai_doaj_org_article_45e559360f304ca185ac4ce54068db7a</doaj_id><sourcerecordid>A478182564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-52c82184e60be084502031b220a44f1e5d50b09f0e5264d305590a86203947c33</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIPZi13zOx42w1GoLhYIfvQ2ZzJnd1GyyJpnF_gT_tZnutuyWXsgMTHjnOW9yzskpitcETwmryMdrPwSn7HTlHUwxFpXg9ZPikDSMTkqK2dOd9UHxIsbrDLG6LJ8XB5RxVrGmOiz-fjYxwtI4lYx3SLkOpaBcXGZ5FHyP0gLQKZlQWl6htQpGuTTKemF-DW4-uBuF1iYMERmHZtBBRMq2fmV0ypoKgLR3KXhroUMq3dotTTcfEmpVCAYCsrAG-7J41isb4dX2e1T8_HL64-RscnH59fxkdjHRVUPTRFBdU1JzKHELuOYC5_xISylWnPcERCdwi5seg6Al7xgWosGqHqvQ8EozdlS83fiurI9yW8UoCRP5bSgmmTjfEJ1X13IVzFKFG-mVkbeCD3OpQjLaguQCsj8rcc8w14rUQmmuQXBc1l1bqez1abvb0C6h05BLoeye6f4fZxZy7teSiaqucZkNjjcGiwdhZ7MLOWqYCEYpFevx4B-2mwX_e4CYZG6jBmuVAz-MORJaioqw0fbdA_TxSmypucrJGtf7fEY9msoZr2pSU1HyTE0fofLT5YuVmw-9yfpewPFewHhB4E-aqyFGef792_-zl1f77PsddgHKpkX0dhivdtwH-QbUwccYoL-vLMFynK67ashxuuR2unLYm91m3gfdjRP7B25vHTo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351359201</pqid></control><display><type>article</type><title>Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level</title><source>MEDLINE</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Arias-Goeta, Camilo ; Mousson, Laurence ; Rougeon, François ; Failloux, Anna-Bella</creator><contributor>Vasilakis, Nikos</contributor><creatorcontrib>Arias-Goeta, Camilo ; Mousson, Laurence ; Rougeon, François ; Failloux, Anna-Bella ; Vasilakis, Nikos</creatorcontrib><description>Emergence of arboviruses could result from their ability to exploit new environments, for example a new host. This ability is facilitated by the high mutation rate occurring during viral genome replication. The last emergence of chikungunya in the Indian Ocean region corroborates this statement since a single viral mutation at the position 226 on the E1 glycoprotein (E1-A226V) was associated with enhanced transmission by the mosquito Aedes albopictus in regions where the major mosquito vector, Aedes aegypti, is absent.We used direct competition assays in vivo to dissect out the mechanisms underlying the selection of E1-226V by Ae. albopictus. When the original variant E1-226A and the newly emerged E1-226V were provided in the same blood-meal at equal titers to both species of mosquitoes, we found that the proportion of both variants was drastically different in the two mosquito species. Following ingestion of the infectious blood-meal, the E1-226V variant was preferentially selected in Ae. albopictus, whereas the E1-226A variant was sometimes favored in Ae. aegypti. Interestingly, when the two variants were introduced into the mosquitoes by intrathoracic inoculations, E1-226V was no longer favored for dissemination and transmission in Ae. albopictus, showing that the midgut barrier plays a key role in E1-226V selection.This study sheds light on the role of the midgut barrier in the selection of novel arbovirus emerging variants. We also bring new insight into how the pre-existing variant E1-226V was selected among other viral variants including E1-226A. Indeed the E1-226V variant present at low levels in natural viral populations could rapidly emerge after being selected in Ae. albopictus at the midgut barrier level.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0057548</identifier><identifier>PMID: 23437397</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Aedes - virology ; Aedes aegypti ; Aedes albopictus ; Alanine - genetics ; Alanine - metabolism ; Alphavirus Infections - transmission ; Alphavirus Infections - virology ; Animal biology ; Animals ; Aquatic insects ; Asian tiger mosquito ; Biology ; Blood ; Chikungunya Fever ; Chikungunya virus ; Chikungunya virus - genetics ; Chikungunya virus - growth &amp; development ; Chikungunya virus - isolation &amp; purification ; Cloning ; Culicidae ; Digestive System - virology ; Disease transmission ; Emergence ; Encephalitis ; Female ; Genetic aspects ; Genomes ; Genomics ; Genotype &amp; phenotype ; Glycoproteins ; Host Specificity ; Host-Pathogen Interactions ; Humans ; Infant, Newborn ; Infections ; Ingestion ; Insect Vectors - virology ; Invertebrate Zoology ; Laboratory animals ; Life Sciences ; Male ; Microbiology and Parasitology ; Microinjections ; Midgut ; Mosquitoes ; Mutation ; Valine - genetics ; Valine - metabolism ; Vector-borne diseases ; Viral Envelope Proteins - genetics ; Virology ; Virus Replication ; Viruses ; West Nile virus ; Young Adult</subject><ispartof>PloS one, 2013-02, Vol.8 (2), p.e57548-e57548</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 ARIAS-GOETA et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2013 ARIAS-GOETA et al 2013 ARIAS-GOETA et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-52c82184e60be084502031b220a44f1e5d50b09f0e5264d305590a86203947c33</citedby><cites>FETCH-LOGICAL-c792t-52c82184e60be084502031b220a44f1e5d50b09f0e5264d305590a86203947c33</cites><orcidid>0000-0001-6890-0820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578806/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578806/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23437397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01532225$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Vasilakis, Nikos</contributor><creatorcontrib>Arias-Goeta, Camilo</creatorcontrib><creatorcontrib>Mousson, Laurence</creatorcontrib><creatorcontrib>Rougeon, François</creatorcontrib><creatorcontrib>Failloux, Anna-Bella</creatorcontrib><title>Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Emergence of arboviruses could result from their ability to exploit new environments, for example a new host. This ability is facilitated by the high mutation rate occurring during viral genome replication. The last emergence of chikungunya in the Indian Ocean region corroborates this statement since a single viral mutation at the position 226 on the E1 glycoprotein (E1-A226V) was associated with enhanced transmission by the mosquito Aedes albopictus in regions where the major mosquito vector, Aedes aegypti, is absent.We used direct competition assays in vivo to dissect out the mechanisms underlying the selection of E1-226V by Ae. albopictus. When the original variant E1-226A and the newly emerged E1-226V were provided in the same blood-meal at equal titers to both species of mosquitoes, we found that the proportion of both variants was drastically different in the two mosquito species. Following ingestion of the infectious blood-meal, the E1-226V variant was preferentially selected in Ae. albopictus, whereas the E1-226A variant was sometimes favored in Ae. aegypti. Interestingly, when the two variants were introduced into the mosquitoes by intrathoracic inoculations, E1-226V was no longer favored for dissemination and transmission in Ae. albopictus, showing that the midgut barrier plays a key role in E1-226V selection.This study sheds light on the role of the midgut barrier in the selection of novel arbovirus emerging variants. We also bring new insight into how the pre-existing variant E1-226V was selected among other viral variants including E1-226A. Indeed the E1-226V variant present at low levels in natural viral populations could rapidly emerge after being selected in Ae. albopictus at the midgut barrier level.</description><subject>Adaptation</subject><subject>Aedes - virology</subject><subject>Aedes aegypti</subject><subject>Aedes albopictus</subject><subject>Alanine - genetics</subject><subject>Alanine - metabolism</subject><subject>Alphavirus Infections - transmission</subject><subject>Alphavirus Infections - virology</subject><subject>Animal biology</subject><subject>Animals</subject><subject>Aquatic insects</subject><subject>Asian tiger mosquito</subject><subject>Biology</subject><subject>Blood</subject><subject>Chikungunya Fever</subject><subject>Chikungunya virus</subject><subject>Chikungunya virus - genetics</subject><subject>Chikungunya virus - growth &amp; development</subject><subject>Chikungunya virus - isolation &amp; purification</subject><subject>Cloning</subject><subject>Culicidae</subject><subject>Digestive System - virology</subject><subject>Disease transmission</subject><subject>Emergence</subject><subject>Encephalitis</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Glycoproteins</subject><subject>Host Specificity</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Infections</subject><subject>Ingestion</subject><subject>Insect Vectors - virology</subject><subject>Invertebrate Zoology</subject><subject>Laboratory animals</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Microbiology and Parasitology</subject><subject>Microinjections</subject><subject>Midgut</subject><subject>Mosquitoes</subject><subject>Mutation</subject><subject>Valine - genetics</subject><subject>Valine - metabolism</subject><subject>Vector-borne diseases</subject><subject>Viral Envelope Proteins - genetics</subject><subject>Virology</subject><subject>Virus Replication</subject><subject>Viruses</subject><subject>West Nile virus</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIPZi13zOx42w1GoLhYIfvQ2ZzJnd1GyyJpnF_gT_tZnutuyWXsgMTHjnOW9yzskpitcETwmryMdrPwSn7HTlHUwxFpXg9ZPikDSMTkqK2dOd9UHxIsbrDLG6LJ8XB5RxVrGmOiz-fjYxwtI4lYx3SLkOpaBcXGZ5FHyP0gLQKZlQWl6htQpGuTTKemF-DW4-uBuF1iYMERmHZtBBRMq2fmV0ypoKgLR3KXhroUMq3dotTTcfEmpVCAYCsrAG-7J41isb4dX2e1T8_HL64-RscnH59fxkdjHRVUPTRFBdU1JzKHELuOYC5_xISylWnPcERCdwi5seg6Al7xgWosGqHqvQ8EozdlS83fiurI9yW8UoCRP5bSgmmTjfEJ1X13IVzFKFG-mVkbeCD3OpQjLaguQCsj8rcc8w14rUQmmuQXBc1l1bqez1abvb0C6h05BLoeye6f4fZxZy7teSiaqucZkNjjcGiwdhZ7MLOWqYCEYpFevx4B-2mwX_e4CYZG6jBmuVAz-MORJaioqw0fbdA_TxSmypucrJGtf7fEY9msoZr2pSU1HyTE0fofLT5YuVmw-9yfpewPFewHhB4E-aqyFGef792_-zl1f77PsddgHKpkX0dhivdtwH-QbUwccYoL-vLMFynK67ashxuuR2unLYm91m3gfdjRP7B25vHTo</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>Arias-Goeta, Camilo</creator><creator>Mousson, Laurence</creator><creator>Rougeon, François</creator><creator>Failloux, Anna-Bella</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6890-0820</orcidid></search><sort><creationdate>20130221</creationdate><title>Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level</title><author>Arias-Goeta, Camilo ; Mousson, Laurence ; Rougeon, François ; Failloux, Anna-Bella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-52c82184e60be084502031b220a44f1e5d50b09f0e5264d305590a86203947c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation</topic><topic>Aedes - virology</topic><topic>Aedes aegypti</topic><topic>Aedes albopictus</topic><topic>Alanine - genetics</topic><topic>Alanine - metabolism</topic><topic>Alphavirus Infections - transmission</topic><topic>Alphavirus Infections - virology</topic><topic>Animal biology</topic><topic>Animals</topic><topic>Aquatic insects</topic><topic>Asian tiger mosquito</topic><topic>Biology</topic><topic>Blood</topic><topic>Chikungunya Fever</topic><topic>Chikungunya virus</topic><topic>Chikungunya virus - genetics</topic><topic>Chikungunya virus - growth &amp; development</topic><topic>Chikungunya virus - isolation &amp; purification</topic><topic>Cloning</topic><topic>Culicidae</topic><topic>Digestive System - virology</topic><topic>Disease transmission</topic><topic>Emergence</topic><topic>Encephalitis</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Glycoproteins</topic><topic>Host Specificity</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Infections</topic><topic>Ingestion</topic><topic>Insect Vectors - virology</topic><topic>Invertebrate Zoology</topic><topic>Laboratory animals</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Microbiology and Parasitology</topic><topic>Microinjections</topic><topic>Midgut</topic><topic>Mosquitoes</topic><topic>Mutation</topic><topic>Valine - genetics</topic><topic>Valine - metabolism</topic><topic>Vector-borne diseases</topic><topic>Viral Envelope Proteins - genetics</topic><topic>Virology</topic><topic>Virus Replication</topic><topic>Viruses</topic><topic>West Nile virus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-Goeta, Camilo</creatorcontrib><creatorcontrib>Mousson, Laurence</creatorcontrib><creatorcontrib>Rougeon, François</creatorcontrib><creatorcontrib>Failloux, Anna-Bella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias-Goeta, Camilo</au><au>Mousson, Laurence</au><au>Rougeon, François</au><au>Failloux, Anna-Bella</au><au>Vasilakis, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-02-21</date><risdate>2013</risdate><volume>8</volume><issue>2</issue><spage>e57548</spage><epage>e57548</epage><pages>e57548-e57548</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Emergence of arboviruses could result from their ability to exploit new environments, for example a new host. This ability is facilitated by the high mutation rate occurring during viral genome replication. The last emergence of chikungunya in the Indian Ocean region corroborates this statement since a single viral mutation at the position 226 on the E1 glycoprotein (E1-A226V) was associated with enhanced transmission by the mosquito Aedes albopictus in regions where the major mosquito vector, Aedes aegypti, is absent.We used direct competition assays in vivo to dissect out the mechanisms underlying the selection of E1-226V by Ae. albopictus. When the original variant E1-226A and the newly emerged E1-226V were provided in the same blood-meal at equal titers to both species of mosquitoes, we found that the proportion of both variants was drastically different in the two mosquito species. Following ingestion of the infectious blood-meal, the E1-226V variant was preferentially selected in Ae. albopictus, whereas the E1-226A variant was sometimes favored in Ae. aegypti. Interestingly, when the two variants were introduced into the mosquitoes by intrathoracic inoculations, E1-226V was no longer favored for dissemination and transmission in Ae. albopictus, showing that the midgut barrier plays a key role in E1-226V selection.This study sheds light on the role of the midgut barrier in the selection of novel arbovirus emerging variants. We also bring new insight into how the pre-existing variant E1-226V was selected among other viral variants including E1-226A. Indeed the E1-226V variant present at low levels in natural viral populations could rapidly emerge after being selected in Ae. albopictus at the midgut barrier level.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23437397</pmid><doi>10.1371/journal.pone.0057548</doi><tpages>e57548</tpages><orcidid>https://orcid.org/0000-0001-6890-0820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-02, Vol.8 (2), p.e57548-e57548
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1351359201
source MEDLINE; Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptation
Aedes - virology
Aedes aegypti
Aedes albopictus
Alanine - genetics
Alanine - metabolism
Alphavirus Infections - transmission
Alphavirus Infections - virology
Animal biology
Animals
Aquatic insects
Asian tiger mosquito
Biology
Blood
Chikungunya Fever
Chikungunya virus
Chikungunya virus - genetics
Chikungunya virus - growth & development
Chikungunya virus - isolation & purification
Cloning
Culicidae
Digestive System - virology
Disease transmission
Emergence
Encephalitis
Female
Genetic aspects
Genomes
Genomics
Genotype & phenotype
Glycoproteins
Host Specificity
Host-Pathogen Interactions
Humans
Infant, Newborn
Infections
Ingestion
Insect Vectors - virology
Invertebrate Zoology
Laboratory animals
Life Sciences
Male
Microbiology and Parasitology
Microinjections
Midgut
Mosquitoes
Mutation
Valine - genetics
Valine - metabolism
Vector-borne diseases
Viral Envelope Proteins - genetics
Virology
Virus Replication
Viruses
West Nile virus
Young Adult
title Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissemination%20and%20transmission%20of%20the%20E1-226V%20variant%20of%20chikungunya%20virus%20in%20Aedes%20albopictus%20are%20controlled%20at%20the%20midgut%20barrier%20level&rft.jtitle=PloS%20one&rft.au=Arias-Goeta,%20Camilo&rft.date=2013-02-21&rft.volume=8&rft.issue=2&rft.spage=e57548&rft.epage=e57548&rft.pages=e57548-e57548&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0057548&rft_dat=%3Cgale_plos_%3EA478182564%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1351359201&rft_id=info:pmid/23437397&rft_galeid=A478182564&rft_doaj_id=oai_doaj_org_article_45e559360f304ca185ac4ce54068db7a&rfr_iscdi=true