Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness
To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulat...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-11, Vol.7 (11), p.e50588-e50588 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e50588 |
---|---|
container_issue | 11 |
container_start_page | e50588 |
container_title | PloS one |
container_volume | 7 |
creator | Whitby, Paul W Morton, Daniel J Vanwagoner, Timothy M Seale, Thomas W Cole, Brett K Mussa, Huda J McGhee, Phillip A Bauer, Chee Yoon S Springer, Jennifer M Stull, Terrence L |
description | To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness. |
doi_str_mv | 10.1371/journal.pone.0050588 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351067558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476993501</galeid><doaj_id>oai_doaj_org_article_fc110bf57e3045809b02dceec5e39e3e</doaj_id><sourcerecordid>A476993501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-53fe1a921b733b4c850bd2b9a7e62cdf457a3b373dc460aee5f09a592e7db0f3</originalsourceid><addsrcrecordid>eNqNk21rFDEQxxdRbK1-A9EFQRS8Mw-bffCFUIraQuGgFl8JYTY7ucuR21yTXWn76c32tuVW-kLyImHmN_9MJjNJ8pqSOeUF_bx2vW_BzreuxTkhgoiyfJIc0oqzWc4If7p3PkhehLCOEC_z_HlywDhjOWf0MPl9Crhx25WxfUhNq22P7S1guri-ufiSqhV4UB16cwudcW3qdGq6kHpc9vbO8ml3ji5om9Q7i1El1aZrMYSXyTMNNuCrcT9KLr9_uzw5nZ0vfpydHJ_PVF6xbia4RgoVo3XBeZ2pUpC6YXUFBeZMNToTBfCaF7xRWU4AUWhSgagYFk1NND9K3u5kt9YFOdYlSMoFJXkhRBmJsx3ROFjLrTcb8DfSgZF3BueXEnxnlEWpFaWk1qJATjJRkqomrFGISiCvkGPU-jre1tcbjK6282AnolNPa1Zy6f7ImA4V-ZDMh1HAu6seQyc3Jii0Flp0fcyb8WJAywF99w_6-OtGagnxAfETXbxXDaLyOCvyquKC0EjNH6HianBjVGwibaJ9EvBxEhCZDq-7JfQhyLOfF__PLn5N2fd77ArBdqvgbD-0U5iC2Q5U3oXgUT8UmRI5zMB9NeQwA3KcgRj2Zv-DHoLum57_BUyUAnk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351067558</pqid></control><display><type>article</type><title>Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness</title><source>PLoS (Open access)</source><source>PubMed Central (Open access)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Whitby, Paul W ; Morton, Daniel J ; Vanwagoner, Timothy M ; Seale, Thomas W ; Cole, Brett K ; Mussa, Huda J ; McGhee, Phillip A ; Bauer, Chee Yoon S ; Springer, Jennifer M ; Stull, Terrence L</creator><creatorcontrib>Whitby, Paul W ; Morton, Daniel J ; Vanwagoner, Timothy M ; Seale, Thomas W ; Cole, Brett K ; Mussa, Huda J ; McGhee, Phillip A ; Bauer, Chee Yoon S ; Springer, Jennifer M ; Stull, Terrence L</creatorcontrib><description>To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0050588</identifier><identifier>PMID: 23226321</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal models ; Animals ; Antioxidants ; Bacteremia ; Bacteremia - microbiology ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding sites ; Biological evolution ; Biology ; Biosynthesis ; Catalase - metabolism ; Damage detection ; Damage prevention ; Ear diseases ; Feedback loops ; Female ; Fitness ; Gene expression ; Gene Expression Regulation, Bacterial ; Glutaredoxin ; Gram-positive bacteria ; Haemophilus influenzae ; Haemophilus influenzae - cytology ; Haemophilus influenzae - genetics ; Haemophilus influenzae - metabolism ; Haemophilus influenzae - physiology ; Health sciences ; Heme - metabolism ; Hemophilus infections ; Homeostasis ; Intracellular Space - metabolism ; Iron - metabolism ; Kinetics ; Medicine ; Middle ear ; Mutants ; Mutation ; Negative feedback ; Otitis media ; Otitis Media - microbiology ; Oxidative stress ; Oxidative Stress - genetics ; Oxygen ; OxyR gene ; Pediatrics ; Peroxides ; Peroxiredoxin ; Peroxiredoxins - metabolism ; Pregnancy ; Proteins ; Rats ; Reactive oxygen species ; Regulon ; Reproductive fitness ; Species Specificity ; Strains (organisms) ; Transcription ; Transcription, Genetic ; Weaning</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e50588-e50588</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Whitby et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Whitby et al 2012 Whitby et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-53fe1a921b733b4c850bd2b9a7e62cdf457a3b373dc460aee5f09a592e7db0f3</citedby><cites>FETCH-LOGICAL-c692t-53fe1a921b733b4c850bd2b9a7e62cdf457a3b373dc460aee5f09a592e7db0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511568/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511568/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23226321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitby, Paul W</creatorcontrib><creatorcontrib>Morton, Daniel J</creatorcontrib><creatorcontrib>Vanwagoner, Timothy M</creatorcontrib><creatorcontrib>Seale, Thomas W</creatorcontrib><creatorcontrib>Cole, Brett K</creatorcontrib><creatorcontrib>Mussa, Huda J</creatorcontrib><creatorcontrib>McGhee, Phillip A</creatorcontrib><creatorcontrib>Bauer, Chee Yoon S</creatorcontrib><creatorcontrib>Springer, Jennifer M</creatorcontrib><creatorcontrib>Stull, Terrence L</creatorcontrib><title>Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Bacteremia</subject><subject>Bacteremia - microbiology</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Catalase - metabolism</subject><subject>Damage detection</subject><subject>Damage prevention</subject><subject>Ear diseases</subject><subject>Feedback loops</subject><subject>Female</subject><subject>Fitness</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Glutaredoxin</subject><subject>Gram-positive bacteria</subject><subject>Haemophilus influenzae</subject><subject>Haemophilus influenzae - cytology</subject><subject>Haemophilus influenzae - genetics</subject><subject>Haemophilus influenzae - metabolism</subject><subject>Haemophilus influenzae - physiology</subject><subject>Health sciences</subject><subject>Heme - metabolism</subject><subject>Hemophilus infections</subject><subject>Homeostasis</subject><subject>Intracellular Space - metabolism</subject><subject>Iron - metabolism</subject><subject>Kinetics</subject><subject>Medicine</subject><subject>Middle ear</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Negative feedback</subject><subject>Otitis media</subject><subject>Otitis Media - microbiology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>Oxygen</subject><subject>OxyR gene</subject><subject>Pediatrics</subject><subject>Peroxides</subject><subject>Peroxiredoxin</subject><subject>Peroxiredoxins - metabolism</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Rats</subject><subject>Reactive oxygen species</subject><subject>Regulon</subject><subject>Reproductive fitness</subject><subject>Species Specificity</subject><subject>Strains (organisms)</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Weaning</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21rFDEQxxdRbK1-A9EFQRS8Mw-bffCFUIraQuGgFl8JYTY7ucuR21yTXWn76c32tuVW-kLyImHmN_9MJjNJ8pqSOeUF_bx2vW_BzreuxTkhgoiyfJIc0oqzWc4If7p3PkhehLCOEC_z_HlywDhjOWf0MPl9Crhx25WxfUhNq22P7S1guri-ufiSqhV4UB16cwudcW3qdGq6kHpc9vbO8ml3ji5om9Q7i1El1aZrMYSXyTMNNuCrcT9KLr9_uzw5nZ0vfpydHJ_PVF6xbia4RgoVo3XBeZ2pUpC6YXUFBeZMNToTBfCaF7xRWU4AUWhSgagYFk1NND9K3u5kt9YFOdYlSMoFJXkhRBmJsx3ROFjLrTcb8DfSgZF3BueXEnxnlEWpFaWk1qJATjJRkqomrFGISiCvkGPU-jre1tcbjK6282AnolNPa1Zy6f7ImA4V-ZDMh1HAu6seQyc3Jii0Flp0fcyb8WJAywF99w_6-OtGagnxAfETXbxXDaLyOCvyquKC0EjNH6HianBjVGwibaJ9EvBxEhCZDq-7JfQhyLOfF__PLn5N2fd77ArBdqvgbD-0U5iC2Q5U3oXgUT8UmRI5zMB9NeQwA3KcgRj2Zv-DHoLum57_BUyUAnk</recordid><startdate>20121130</startdate><enddate>20121130</enddate><creator>Whitby, Paul W</creator><creator>Morton, Daniel J</creator><creator>Vanwagoner, Timothy M</creator><creator>Seale, Thomas W</creator><creator>Cole, Brett K</creator><creator>Mussa, Huda J</creator><creator>McGhee, Phillip A</creator><creator>Bauer, Chee Yoon S</creator><creator>Springer, Jennifer M</creator><creator>Stull, Terrence L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121130</creationdate><title>Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness</title><author>Whitby, Paul W ; Morton, Daniel J ; Vanwagoner, Timothy M ; Seale, Thomas W ; Cole, Brett K ; Mussa, Huda J ; McGhee, Phillip A ; Bauer, Chee Yoon S ; Springer, Jennifer M ; Stull, Terrence L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-53fe1a921b733b4c850bd2b9a7e62cdf457a3b373dc460aee5f09a592e7db0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Bacteremia</topic><topic>Bacteremia - microbiology</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Catalase - metabolism</topic><topic>Damage detection</topic><topic>Damage prevention</topic><topic>Ear diseases</topic><topic>Feedback loops</topic><topic>Female</topic><topic>Fitness</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Glutaredoxin</topic><topic>Gram-positive bacteria</topic><topic>Haemophilus influenzae</topic><topic>Haemophilus influenzae - cytology</topic><topic>Haemophilus influenzae - genetics</topic><topic>Haemophilus influenzae - metabolism</topic><topic>Haemophilus influenzae - physiology</topic><topic>Health sciences</topic><topic>Heme - metabolism</topic><topic>Hemophilus infections</topic><topic>Homeostasis</topic><topic>Intracellular Space - metabolism</topic><topic>Iron - metabolism</topic><topic>Kinetics</topic><topic>Medicine</topic><topic>Middle ear</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Negative feedback</topic><topic>Otitis media</topic><topic>Otitis Media - microbiology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>Oxygen</topic><topic>OxyR gene</topic><topic>Pediatrics</topic><topic>Peroxides</topic><topic>Peroxiredoxin</topic><topic>Peroxiredoxins - metabolism</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Rats</topic><topic>Reactive oxygen species</topic><topic>Regulon</topic><topic>Reproductive fitness</topic><topic>Species Specificity</topic><topic>Strains (organisms)</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitby, Paul W</creatorcontrib><creatorcontrib>Morton, Daniel J</creatorcontrib><creatorcontrib>Vanwagoner, Timothy M</creatorcontrib><creatorcontrib>Seale, Thomas W</creatorcontrib><creatorcontrib>Cole, Brett K</creatorcontrib><creatorcontrib>Mussa, Huda J</creatorcontrib><creatorcontrib>McGhee, Phillip A</creatorcontrib><creatorcontrib>Bauer, Chee Yoon S</creatorcontrib><creatorcontrib>Springer, Jennifer M</creatorcontrib><creatorcontrib>Stull, Terrence L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitby, Paul W</au><au>Morton, Daniel J</au><au>Vanwagoner, Timothy M</au><au>Seale, Thomas W</au><au>Cole, Brett K</au><au>Mussa, Huda J</au><au>McGhee, Phillip A</au><au>Bauer, Chee Yoon S</au><au>Springer, Jennifer M</au><au>Stull, Terrence L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-30</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e50588</spage><epage>e50588</epage><pages>e50588-e50588</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23226321</pmid><doi>10.1371/journal.pone.0050588</doi><tpages>e50588</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-11, Vol.7 (11), p.e50588-e50588 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1351067558 |
source | PLoS (Open access); PubMed Central (Open access); MEDLINE; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Animal models Animals Antioxidants Bacteremia Bacteremia - microbiology Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding sites Biological evolution Biology Biosynthesis Catalase - metabolism Damage detection Damage prevention Ear diseases Feedback loops Female Fitness Gene expression Gene Expression Regulation, Bacterial Glutaredoxin Gram-positive bacteria Haemophilus influenzae Haemophilus influenzae - cytology Haemophilus influenzae - genetics Haemophilus influenzae - metabolism Haemophilus influenzae - physiology Health sciences Heme - metabolism Hemophilus infections Homeostasis Intracellular Space - metabolism Iron - metabolism Kinetics Medicine Middle ear Mutants Mutation Negative feedback Otitis media Otitis Media - microbiology Oxidative stress Oxidative Stress - genetics Oxygen OxyR gene Pediatrics Peroxides Peroxiredoxin Peroxiredoxins - metabolism Pregnancy Proteins Rats Reactive oxygen species Regulon Reproductive fitness Species Specificity Strains (organisms) Transcription Transcription, Genetic Weaning |
title | Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haemophilus%20influenzae%20OxyR:%20characterization%20of%20its%20regulation,%20regulon%20and%20role%20in%20fitness&rft.jtitle=PloS%20one&rft.au=Whitby,%20Paul%20W&rft.date=2012-11-30&rft.volume=7&rft.issue=11&rft.spage=e50588&rft.epage=e50588&rft.pages=e50588-e50588&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0050588&rft_dat=%3Cgale_plos_%3EA476993501%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1351067558&rft_id=info:pmid/23226321&rft_galeid=A476993501&rft_doaj_id=oai_doaj_org_article_fc110bf57e3045809b02dceec5e39e3e&rfr_iscdi=true |