Decision support methods for finding phenotype--disorder associations in the bone dysplasia domain

A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a group of rare genetic disorders) a very complex process. Machine learning techniques can facilitate objective interpretation of medical observations for the purposes of decision su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e50614-e50614
Hauptverfasser: Paul, Razan, Groza, Tudor, Hunter, Jane, Zankl, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e50614
container_issue 11
container_start_page e50614
container_title PloS one
container_volume 7
creator Paul, Razan
Groza, Tudor
Hunter, Jane
Zankl, Andreas
description A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a group of rare genetic disorders) a very complex process. Machine learning techniques can facilitate objective interpretation of medical observations for the purposes of decision support. However, building decision support models using such techniques is highly problematic in the context of rare genetic disorders, because it depends on access to mature domain knowledge. This paper describes an approach for developing a decision support model in medical domains that are underpinned by relatively sparse knowledge bases. We propose a solution that combines association rule mining with the Dempster-Shafer theory (DST) to compute probabilistic associations between sets of clinical features and disorders, which can then serve as support for medical decision making (e.g., diagnosis). We show, via experimental results, that our approach is able to provide meaningful outcomes even on small datasets with sparse distributions, in addition to outperforming other Machine Learning techniques and behaving slightly better than an initial diagnosis by a clinician.
doi_str_mv 10.1371/journal.pone.0050614
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351067486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476993612</galeid><doaj_id>oai_doaj_org_article_1305f35c30814b198834ccdd38bd80c3</doaj_id><sourcerecordid>A476993612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-97cb9f9dc2bf79f3dea2e41efed59ed83649be3b4af8ea703570a189ee03df133</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLguhFx6TpR3ojLOvXwMKCX7chTU6mGdqkJqk4_97MTneZyl5ILhrS533PyTk5SfIcozUmNX63s5MzvF-P1sAaoRJVuHiQnOOG5FmVI_LwZH-WPPF-FyFCq-pxcpaTPK8IwedJ-wGE9tqa1E_jaF1IBwidlT5V1qVKG6nNNh07MDbsR8gyqb11ElzKvbdC8xC1PtUmDR2kbcwllXs_9txrnko7cG2eJo8U7z08m7-r5Menj98vv2RX1583lxdXmahLGrKmFm2jGinyVtWNIhJ4DgUGBbJsQFJSFU0LpC24osBrRMoacUwbAESkwoSskpdH37G3ns3l8QyTEqOqLmgVic2RkJbv2Oj0wN2eWa7ZzYF1W8Zd0KKHqEKlIqUgiOKixQ2lpBBCSkJbSZE4RHs_R5vaAaQAExzvF6bLP0Z3bGt_s5gOjn2IBm9mA2d_TeADG7QX0PfcgJ1i3jmpY-YlLSP66h_0_tvN1JbHC2ijbIwrDqbsoqirpiFV9Fwl63uouCQMWsT-KR3PF4K3C0FkAvwJWz55zzbfvv4_e_1zyb4-YTvgfei87aebB7UEiyMonPXegborMkbsMAq31WCHUWDzKETZi9MG3Ylu3z75C3XCBT4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351067486</pqid></control><display><type>article</type><title>Decision support methods for finding phenotype--disorder associations in the bone dysplasia domain</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Paul, Razan ; Groza, Tudor ; Hunter, Jane ; Zankl, Andreas</creator><contributor>Rzhetsky, Andrey</contributor><creatorcontrib>Paul, Razan ; Groza, Tudor ; Hunter, Jane ; Zankl, Andreas ; Rzhetsky, Andrey</creatorcontrib><description>A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a group of rare genetic disorders) a very complex process. Machine learning techniques can facilitate objective interpretation of medical observations for the purposes of decision support. However, building decision support models using such techniques is highly problematic in the context of rare genetic disorders, because it depends on access to mature domain knowledge. This paper describes an approach for developing a decision support model in medical domains that are underpinned by relatively sparse knowledge bases. We propose a solution that combines association rule mining with the Dempster-Shafer theory (DST) to compute probabilistic associations between sets of clinical features and disorders, which can then serve as support for medical decision making (e.g., diagnosis). We show, via experimental results, that our approach is able to provide meaningful outcomes even on small datasets with sparse distributions, in addition to outperforming other Machine Learning techniques and behaving slightly better than an initial diagnosis by a clinician.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0050614</identifier><identifier>PMID: 23226331</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Artificial intelligence ; Bioinformatics ; Biology ; Bone Diseases, Developmental - diagnosis ; Bone Diseases, Developmental - genetics ; Bone dysplasia ; Classification ; Clinical decision making ; Collaboration ; Computer Science ; Cybernetics ; Data Interpretation, Statistical ; Data mining ; Decision making ; Decision support systems ; Diagnosis ; Disorders ; Dysplasia ; Fruits ; Genetic disorders ; Genotype &amp; phenotype ; Humans ; International conferences ; Knowledge ; Knowledge bases (artificial intelligence) ; Learning algorithms ; Machine learning ; Mathematics ; Medical research ; Methods ; Ontology ; Phenotype ; Probability ; Reproducibility of Results ; Researchers</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e50614-e50614</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Paul et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Paul et al 2012 Paul et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-97cb9f9dc2bf79f3dea2e41efed59ed83649be3b4af8ea703570a189ee03df133</citedby><cites>FETCH-LOGICAL-c758t-97cb9f9dc2bf79f3dea2e41efed59ed83649be3b4af8ea703570a189ee03df133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511538/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511538/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23226331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rzhetsky, Andrey</contributor><creatorcontrib>Paul, Razan</creatorcontrib><creatorcontrib>Groza, Tudor</creatorcontrib><creatorcontrib>Hunter, Jane</creatorcontrib><creatorcontrib>Zankl, Andreas</creatorcontrib><title>Decision support methods for finding phenotype--disorder associations in the bone dysplasia domain</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a group of rare genetic disorders) a very complex process. Machine learning techniques can facilitate objective interpretation of medical observations for the purposes of decision support. However, building decision support models using such techniques is highly problematic in the context of rare genetic disorders, because it depends on access to mature domain knowledge. This paper describes an approach for developing a decision support model in medical domains that are underpinned by relatively sparse knowledge bases. We propose a solution that combines association rule mining with the Dempster-Shafer theory (DST) to compute probabilistic associations between sets of clinical features and disorders, which can then serve as support for medical decision making (e.g., diagnosis). We show, via experimental results, that our approach is able to provide meaningful outcomes even on small datasets with sparse distributions, in addition to outperforming other Machine Learning techniques and behaving slightly better than an initial diagnosis by a clinician.</description><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Bone Diseases, Developmental - diagnosis</subject><subject>Bone Diseases, Developmental - genetics</subject><subject>Bone dysplasia</subject><subject>Classification</subject><subject>Clinical decision making</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Cybernetics</subject><subject>Data Interpretation, Statistical</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Diagnosis</subject><subject>Disorders</subject><subject>Dysplasia</subject><subject>Fruits</subject><subject>Genetic disorders</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>International conferences</subject><subject>Knowledge</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematics</subject><subject>Medical research</subject><subject>Methods</subject><subject>Ontology</subject><subject>Phenotype</subject><subject>Probability</subject><subject>Reproducibility of Results</subject><subject>Researchers</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLguhFx6TpR3ojLOvXwMKCX7chTU6mGdqkJqk4_97MTneZyl5ILhrS533PyTk5SfIcozUmNX63s5MzvF-P1sAaoRJVuHiQnOOG5FmVI_LwZH-WPPF-FyFCq-pxcpaTPK8IwedJ-wGE9tqa1E_jaF1IBwidlT5V1qVKG6nNNh07MDbsR8gyqb11ElzKvbdC8xC1PtUmDR2kbcwllXs_9txrnko7cG2eJo8U7z08m7-r5Menj98vv2RX1583lxdXmahLGrKmFm2jGinyVtWNIhJ4DgUGBbJsQFJSFU0LpC24osBrRMoacUwbAESkwoSskpdH37G3ns3l8QyTEqOqLmgVic2RkJbv2Oj0wN2eWa7ZzYF1W8Zd0KKHqEKlIqUgiOKixQ2lpBBCSkJbSZE4RHs_R5vaAaQAExzvF6bLP0Z3bGt_s5gOjn2IBm9mA2d_TeADG7QX0PfcgJ1i3jmpY-YlLSP66h_0_tvN1JbHC2ijbIwrDqbsoqirpiFV9Fwl63uouCQMWsT-KR3PF4K3C0FkAvwJWz55zzbfvv4_e_1zyb4-YTvgfei87aebB7UEiyMonPXegborMkbsMAq31WCHUWDzKETZi9MG3Ylu3z75C3XCBT4</recordid><startdate>20121130</startdate><enddate>20121130</enddate><creator>Paul, Razan</creator><creator>Groza, Tudor</creator><creator>Hunter, Jane</creator><creator>Zankl, Andreas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121130</creationdate><title>Decision support methods for finding phenotype--disorder associations in the bone dysplasia domain</title><author>Paul, Razan ; Groza, Tudor ; Hunter, Jane ; Zankl, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-97cb9f9dc2bf79f3dea2e41efed59ed83649be3b4af8ea703570a189ee03df133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Bone Diseases, Developmental - diagnosis</topic><topic>Bone Diseases, Developmental - genetics</topic><topic>Bone dysplasia</topic><topic>Classification</topic><topic>Clinical decision making</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Cybernetics</topic><topic>Data Interpretation, Statistical</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Diagnosis</topic><topic>Disorders</topic><topic>Dysplasia</topic><topic>Fruits</topic><topic>Genetic disorders</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>International conferences</topic><topic>Knowledge</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematics</topic><topic>Medical research</topic><topic>Methods</topic><topic>Ontology</topic><topic>Phenotype</topic><topic>Probability</topic><topic>Reproducibility of Results</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Razan</creatorcontrib><creatorcontrib>Groza, Tudor</creatorcontrib><creatorcontrib>Hunter, Jane</creatorcontrib><creatorcontrib>Zankl, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Razan</au><au>Groza, Tudor</au><au>Hunter, Jane</au><au>Zankl, Andreas</au><au>Rzhetsky, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision support methods for finding phenotype--disorder associations in the bone dysplasia domain</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-30</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e50614</spage><epage>e50614</epage><pages>e50614-e50614</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a group of rare genetic disorders) a very complex process. Machine learning techniques can facilitate objective interpretation of medical observations for the purposes of decision support. However, building decision support models using such techniques is highly problematic in the context of rare genetic disorders, because it depends on access to mature domain knowledge. This paper describes an approach for developing a decision support model in medical domains that are underpinned by relatively sparse knowledge bases. We propose a solution that combines association rule mining with the Dempster-Shafer theory (DST) to compute probabilistic associations between sets of clinical features and disorders, which can then serve as support for medical decision making (e.g., diagnosis). We show, via experimental results, that our approach is able to provide meaningful outcomes even on small datasets with sparse distributions, in addition to outperforming other Machine Learning techniques and behaving slightly better than an initial diagnosis by a clinician.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23226331</pmid><doi>10.1371/journal.pone.0050614</doi><tpages>e50614</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-11, Vol.7 (11), p.e50614-e50614
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1351067486
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Artificial intelligence
Bioinformatics
Biology
Bone Diseases, Developmental - diagnosis
Bone Diseases, Developmental - genetics
Bone dysplasia
Classification
Clinical decision making
Collaboration
Computer Science
Cybernetics
Data Interpretation, Statistical
Data mining
Decision making
Decision support systems
Diagnosis
Disorders
Dysplasia
Fruits
Genetic disorders
Genotype & phenotype
Humans
International conferences
Knowledge
Knowledge bases (artificial intelligence)
Learning algorithms
Machine learning
Mathematics
Medical research
Methods
Ontology
Phenotype
Probability
Reproducibility of Results
Researchers
title Decision support methods for finding phenotype--disorder associations in the bone dysplasia domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20support%20methods%20for%20finding%20phenotype--disorder%20associations%20in%20the%20bone%20dysplasia%20domain&rft.jtitle=PloS%20one&rft.au=Paul,%20Razan&rft.date=2012-11-30&rft.volume=7&rft.issue=11&rft.spage=e50614&rft.epage=e50614&rft.pages=e50614-e50614&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0050614&rft_dat=%3Cgale_plos_%3EA476993612%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1351067486&rft_id=info:pmid/23226331&rft_galeid=A476993612&rft_doaj_id=oai_doaj_org_article_1305f35c30814b198834ccdd38bd80c3&rfr_iscdi=true