Differences between adiposity indicators for predicting all-cause mortality in a representative sample of United States non-elderly adults
Adiposity predicts health outcomes, but this relationship could depend on population characteristics and adiposity indicator employed. In a representative sample of 11,437 US adults (National Health and Nutrition Examination Survey, 1988-1994, ages 18-64) we estimated associations with all-cause mor...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-11, Vol.7 (11), p.e50428 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e50428 |
container_title | PloS one |
container_volume | 7 |
creator | Kahn, Henry S Bullard, Kai McKeever Barker, Lawrence E Imperatore, Giuseppina |
description | Adiposity predicts health outcomes, but this relationship could depend on population characteristics and adiposity indicator employed. In a representative sample of 11,437 US adults (National Health and Nutrition Examination Survey, 1988-1994, ages 18-64) we estimated associations with all-cause mortality for body mass index (BMI) and four abdominal adiposity indicators (waist circumference [WC], waist-to-height ratio [WHtR], waist-to-hip ratio [WHR], and waist-to-thigh ratio [WTR]). In a fasting subsample we considered the lipid accumulation product (LAP; [WC enlargement*triglycerides]).
For each adiposity indicator we estimated linear and categorical mortality risks using sex-specific, proportional-hazards models adjusted for age, black ancestry, tobacco exposure, and socioeconomic position. There were 1,081 deaths through 2006. Using linear models we found little difference among indicators (adjusted hazard ratios [aHRs] per SD increase 1.2-1.4 for men, 1.3-1.5 for women). Using categorical models, men in adiposity midrange (quartiles 2+3; compared to quartile 1) were not at significantly increased risk (aHRs1.1), especially black men assessed by WTR (aHR 1.9 [1.4-2.6]) and black women by LAP (aHR 2.2 [1.4-3.5]). Quartile 4 of WC or WHtR carried no significant risk for diabetic persons (aHRs 0.7-1.1), but elevated risks for those without diabetes (aHRs>1.5). For both sexes, quartile 4 of LAP carried increased risks for tobacco-exposed persons (aHRs>1.6) but not for non-exposed (aHRs |
doi_str_mv | 10.1371/journal.pone.0050428 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351067175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476993490</galeid><doaj_id>oai_doaj_org_article_37ac6cca48104acd963d827a4972a9fb</doaj_id><sourcerecordid>A476993490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-67ad2bf6c1dea5e3a3f39ecb28ced3b4578e10d1d8772d3ab9bcf207ff9c14e3</originalsourceid><addsrcrecordid>eNqNk99rFDEQxxdRbK3-B6IBQfThzk2yu9l9EUr9VSgUbPU1zCaTa0ouOZNstf-Cf7U571p60gfJQ37MZ76TmWSq6jmt55QL-u4yTNGDm6-Cx3ldt3XD-gfVPh04m3Ws5g_vrPeqJyldFoj3Xfe42mOcsY71fL_6_cEagxG9wkRGzD8RPQFtVyHZfE2s11ZBDjEREyJZRSz7bP2CgHMzBVNCsgwxg9vQBEjEQiX0GbK9QpJguXJIgiHfvM2oyVkxlFg--Bk6jdFdl3iTy-lp9ciAS_hsOx9U558-nh99mZ2cfj4-OjyZqW5gedYJ0Gw0naIaoUUO3PAB1ch6hZqPTSt6pLWmuheCaQ7jMCrDamHMoGiD_KB6uZFduZDktopJUt7SuhNUtIU43hA6wKVcRbuEeC0DWPn3IMSFhJitcii5ANUpBU1P6waUHjqueyagGQSDwYxF6_022jQuUatSlwhuR3TX4u2FXIQrWa5D27YpAm-2AjH8mDBlubRJoXPgMUzl3oyL8vYtGwr66h_0_uy21AJKAtabUOKqtag8bEQ3DLwZ6kLN76HK0Li0qnw5Y8v5jsPbHYfCZPyVF-WLJHl89vX_2dPvu-zrO-wFgssXKbgp2-DTLthsQBVDShHNbZFpLdcdc1MNue4Yue2Y4vbi7gPdOt20CP8DFhQVAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351067175</pqid></control><display><type>article</type><title>Differences between adiposity indicators for predicting all-cause mortality in a representative sample of United States non-elderly adults</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kahn, Henry S ; Bullard, Kai McKeever ; Barker, Lawrence E ; Imperatore, Giuseppina</creator><contributor>Folli, Franco</contributor><creatorcontrib>Kahn, Henry S ; Bullard, Kai McKeever ; Barker, Lawrence E ; Imperatore, Giuseppina ; Folli, Franco</creatorcontrib><description>Adiposity predicts health outcomes, but this relationship could depend on population characteristics and adiposity indicator employed. In a representative sample of 11,437 US adults (National Health and Nutrition Examination Survey, 1988-1994, ages 18-64) we estimated associations with all-cause mortality for body mass index (BMI) and four abdominal adiposity indicators (waist circumference [WC], waist-to-height ratio [WHtR], waist-to-hip ratio [WHR], and waist-to-thigh ratio [WTR]). In a fasting subsample we considered the lipid accumulation product (LAP; [WC enlargement*triglycerides]).
For each adiposity indicator we estimated linear and categorical mortality risks using sex-specific, proportional-hazards models adjusted for age, black ancestry, tobacco exposure, and socioeconomic position. There were 1,081 deaths through 2006. Using linear models we found little difference among indicators (adjusted hazard ratios [aHRs] per SD increase 1.2-1.4 for men, 1.3-1.5 for women). Using categorical models, men in adiposity midrange (quartiles 2+3; compared to quartile 1) were not at significantly increased risk (aHRs<1.1) unless assessed by WTR (aHR 1.4 [95%CI 1.0-1.9]). Women in adiposity midrange, however, tended toward elevated risk (aHRs 1.2-1.5), except for black women assessed by BMI, WC or WHtR (aHRs 0.7-0.8). Men or women in adiposity quartile 4 (compared to midrange) were generally at risk (aHRs>1.1), especially black men assessed by WTR (aHR 1.9 [1.4-2.6]) and black women by LAP (aHR 2.2 [1.4-3.5]). Quartile 4 of WC or WHtR carried no significant risk for diabetic persons (aHRs 0.7-1.1), but elevated risks for those without diabetes (aHRs>1.5). For both sexes, quartile 4 of LAP carried increased risks for tobacco-exposed persons (aHRs>1.6) but not for non-exposed (aHRs<1.0).
Predictions of mortality risk associated with top-quartile adiposity vary with the indicator used, sex, ancestry, and other characteristics. Interpretations of adiposity should consider how variation in the physiology and expandability of regional adipose-tissue depots impacts health.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0050428</identifier><identifier>PMID: 23226283</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipose tissue ; Adipose Tissue - pathology ; Adiposity ; Adolescent ; Adult ; Adults ; Biology ; Black or African American ; Black People ; Body Composition ; Body mass ; Body Mass Index ; Body size ; Diabetes mellitus ; Enlargement ; Exposure ; Female ; Geriatrics ; Hazards ; Health aspects ; Health risk assessment ; Health risks ; Hip ; Humans ; Indicators ; Insulin resistance ; Male ; Mathematical models ; Medicine ; Men ; Mexican Americans ; Middle Aged ; Mortality ; Nutrition ; Nutrition Surveys ; Obesity - ethnology ; Obesity - mortality ; Obesity - pathology ; Older people ; Physiological aspects ; Population characteristics ; Predictions ; Prognosis ; Quartiles ; Risk assessment ; Risk Factors ; Sex ; Sex Factors ; Smoking ; Social and Behavioral Sciences ; Social Class ; Socioeconomic factors ; Surveys ; Survival Rate ; Thigh ; Tobacco ; Triglycerides ; Type 2 diabetes ; United States - epidemiology ; Waist Circumference ; Waist-Hip Ratio ; White People</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e50428</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-67ad2bf6c1dea5e3a3f39ecb28ced3b4578e10d1d8772d3ab9bcf207ff9c14e3</citedby><cites>FETCH-LOGICAL-c692t-67ad2bf6c1dea5e3a3f39ecb28ced3b4578e10d1d8772d3ab9bcf207ff9c14e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511554/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511554/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23226283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Folli, Franco</contributor><creatorcontrib>Kahn, Henry S</creatorcontrib><creatorcontrib>Bullard, Kai McKeever</creatorcontrib><creatorcontrib>Barker, Lawrence E</creatorcontrib><creatorcontrib>Imperatore, Giuseppina</creatorcontrib><title>Differences between adiposity indicators for predicting all-cause mortality in a representative sample of United States non-elderly adults</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Adiposity predicts health outcomes, but this relationship could depend on population characteristics and adiposity indicator employed. In a representative sample of 11,437 US adults (National Health and Nutrition Examination Survey, 1988-1994, ages 18-64) we estimated associations with all-cause mortality for body mass index (BMI) and four abdominal adiposity indicators (waist circumference [WC], waist-to-height ratio [WHtR], waist-to-hip ratio [WHR], and waist-to-thigh ratio [WTR]). In a fasting subsample we considered the lipid accumulation product (LAP; [WC enlargement*triglycerides]).
For each adiposity indicator we estimated linear and categorical mortality risks using sex-specific, proportional-hazards models adjusted for age, black ancestry, tobacco exposure, and socioeconomic position. There were 1,081 deaths through 2006. Using linear models we found little difference among indicators (adjusted hazard ratios [aHRs] per SD increase 1.2-1.4 for men, 1.3-1.5 for women). Using categorical models, men in adiposity midrange (quartiles 2+3; compared to quartile 1) were not at significantly increased risk (aHRs<1.1) unless assessed by WTR (aHR 1.4 [95%CI 1.0-1.9]). Women in adiposity midrange, however, tended toward elevated risk (aHRs 1.2-1.5), except for black women assessed by BMI, WC or WHtR (aHRs 0.7-0.8). Men or women in adiposity quartile 4 (compared to midrange) were generally at risk (aHRs>1.1), especially black men assessed by WTR (aHR 1.9 [1.4-2.6]) and black women by LAP (aHR 2.2 [1.4-3.5]). Quartile 4 of WC or WHtR carried no significant risk for diabetic persons (aHRs 0.7-1.1), but elevated risks for those without diabetes (aHRs>1.5). For both sexes, quartile 4 of LAP carried increased risks for tobacco-exposed persons (aHRs>1.6) but not for non-exposed (aHRs<1.0).
Predictions of mortality risk associated with top-quartile adiposity vary with the indicator used, sex, ancestry, and other characteristics. Interpretations of adiposity should consider how variation in the physiology and expandability of regional adipose-tissue depots impacts health.</description><subject>Adipose tissue</subject><subject>Adipose Tissue - pathology</subject><subject>Adiposity</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Adults</subject><subject>Biology</subject><subject>Black or African American</subject><subject>Black People</subject><subject>Body Composition</subject><subject>Body mass</subject><subject>Body Mass Index</subject><subject>Body size</subject><subject>Diabetes mellitus</subject><subject>Enlargement</subject><subject>Exposure</subject><subject>Female</subject><subject>Geriatrics</subject><subject>Hazards</subject><subject>Health aspects</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Hip</subject><subject>Humans</subject><subject>Indicators</subject><subject>Insulin resistance</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Men</subject><subject>Mexican Americans</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Nutrition</subject><subject>Nutrition Surveys</subject><subject>Obesity - ethnology</subject><subject>Obesity - mortality</subject><subject>Obesity - pathology</subject><subject>Older people</subject><subject>Physiological aspects</subject><subject>Population characteristics</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Quartiles</subject><subject>Risk assessment</subject><subject>Risk Factors</subject><subject>Sex</subject><subject>Sex Factors</subject><subject>Smoking</subject><subject>Social and Behavioral Sciences</subject><subject>Social Class</subject><subject>Socioeconomic factors</subject><subject>Surveys</subject><subject>Survival Rate</subject><subject>Thigh</subject><subject>Tobacco</subject><subject>Triglycerides</subject><subject>Type 2 diabetes</subject><subject>United States - epidemiology</subject><subject>Waist Circumference</subject><subject>Waist-Hip Ratio</subject><subject>White People</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99rFDEQxxdRbK3-B6IBQfThzk2yu9l9EUr9VSgUbPU1zCaTa0ouOZNstf-Cf7U571p60gfJQ37MZ76TmWSq6jmt55QL-u4yTNGDm6-Cx3ldt3XD-gfVPh04m3Ws5g_vrPeqJyldFoj3Xfe42mOcsY71fL_6_cEagxG9wkRGzD8RPQFtVyHZfE2s11ZBDjEREyJZRSz7bP2CgHMzBVNCsgwxg9vQBEjEQiX0GbK9QpJguXJIgiHfvM2oyVkxlFg--Bk6jdFdl3iTy-lp9ciAS_hsOx9U558-nh99mZ2cfj4-OjyZqW5gedYJ0Gw0naIaoUUO3PAB1ch6hZqPTSt6pLWmuheCaQ7jMCrDamHMoGiD_KB6uZFduZDktopJUt7SuhNUtIU43hA6wKVcRbuEeC0DWPn3IMSFhJitcii5ANUpBU1P6waUHjqueyagGQSDwYxF6_022jQuUatSlwhuR3TX4u2FXIQrWa5D27YpAm-2AjH8mDBlubRJoXPgMUzl3oyL8vYtGwr66h_0_uy21AJKAtabUOKqtag8bEQ3DLwZ6kLN76HK0Li0qnw5Y8v5jsPbHYfCZPyVF-WLJHl89vX_2dPvu-zrO-wFgssXKbgp2-DTLthsQBVDShHNbZFpLdcdc1MNue4Yue2Y4vbi7gPdOt20CP8DFhQVAA</recordid><startdate>20121130</startdate><enddate>20121130</enddate><creator>Kahn, Henry S</creator><creator>Bullard, Kai McKeever</creator><creator>Barker, Lawrence E</creator><creator>Imperatore, Giuseppina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121130</creationdate><title>Differences between adiposity indicators for predicting all-cause mortality in a representative sample of United States non-elderly adults</title><author>Kahn, Henry S ; Bullard, Kai McKeever ; Barker, Lawrence E ; Imperatore, Giuseppina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-67ad2bf6c1dea5e3a3f39ecb28ced3b4578e10d1d8772d3ab9bcf207ff9c14e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adipose tissue</topic><topic>Adipose Tissue - pathology</topic><topic>Adiposity</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Adults</topic><topic>Biology</topic><topic>Black or African American</topic><topic>Black People</topic><topic>Body Composition</topic><topic>Body mass</topic><topic>Body Mass Index</topic><topic>Body size</topic><topic>Diabetes mellitus</topic><topic>Enlargement</topic><topic>Exposure</topic><topic>Female</topic><topic>Geriatrics</topic><topic>Hazards</topic><topic>Health aspects</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Hip</topic><topic>Humans</topic><topic>Indicators</topic><topic>Insulin resistance</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Men</topic><topic>Mexican Americans</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Nutrition</topic><topic>Nutrition Surveys</topic><topic>Obesity - ethnology</topic><topic>Obesity - mortality</topic><topic>Obesity - pathology</topic><topic>Older people</topic><topic>Physiological aspects</topic><topic>Population characteristics</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Quartiles</topic><topic>Risk assessment</topic><topic>Risk Factors</topic><topic>Sex</topic><topic>Sex Factors</topic><topic>Smoking</topic><topic>Social and Behavioral Sciences</topic><topic>Social Class</topic><topic>Socioeconomic factors</topic><topic>Surveys</topic><topic>Survival Rate</topic><topic>Thigh</topic><topic>Tobacco</topic><topic>Triglycerides</topic><topic>Type 2 diabetes</topic><topic>United States - epidemiology</topic><topic>Waist Circumference</topic><topic>Waist-Hip Ratio</topic><topic>White People</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahn, Henry S</creatorcontrib><creatorcontrib>Bullard, Kai McKeever</creatorcontrib><creatorcontrib>Barker, Lawrence E</creatorcontrib><creatorcontrib>Imperatore, Giuseppina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahn, Henry S</au><au>Bullard, Kai McKeever</au><au>Barker, Lawrence E</au><au>Imperatore, Giuseppina</au><au>Folli, Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences between adiposity indicators for predicting all-cause mortality in a representative sample of United States non-elderly adults</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-30</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e50428</spage><pages>e50428-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Adiposity predicts health outcomes, but this relationship could depend on population characteristics and adiposity indicator employed. In a representative sample of 11,437 US adults (National Health and Nutrition Examination Survey, 1988-1994, ages 18-64) we estimated associations with all-cause mortality for body mass index (BMI) and four abdominal adiposity indicators (waist circumference [WC], waist-to-height ratio [WHtR], waist-to-hip ratio [WHR], and waist-to-thigh ratio [WTR]). In a fasting subsample we considered the lipid accumulation product (LAP; [WC enlargement*triglycerides]).
For each adiposity indicator we estimated linear and categorical mortality risks using sex-specific, proportional-hazards models adjusted for age, black ancestry, tobacco exposure, and socioeconomic position. There were 1,081 deaths through 2006. Using linear models we found little difference among indicators (adjusted hazard ratios [aHRs] per SD increase 1.2-1.4 for men, 1.3-1.5 for women). Using categorical models, men in adiposity midrange (quartiles 2+3; compared to quartile 1) were not at significantly increased risk (aHRs<1.1) unless assessed by WTR (aHR 1.4 [95%CI 1.0-1.9]). Women in adiposity midrange, however, tended toward elevated risk (aHRs 1.2-1.5), except for black women assessed by BMI, WC or WHtR (aHRs 0.7-0.8). Men or women in adiposity quartile 4 (compared to midrange) were generally at risk (aHRs>1.1), especially black men assessed by WTR (aHR 1.9 [1.4-2.6]) and black women by LAP (aHR 2.2 [1.4-3.5]). Quartile 4 of WC or WHtR carried no significant risk for diabetic persons (aHRs 0.7-1.1), but elevated risks for those without diabetes (aHRs>1.5). For both sexes, quartile 4 of LAP carried increased risks for tobacco-exposed persons (aHRs>1.6) but not for non-exposed (aHRs<1.0).
Predictions of mortality risk associated with top-quartile adiposity vary with the indicator used, sex, ancestry, and other characteristics. Interpretations of adiposity should consider how variation in the physiology and expandability of regional adipose-tissue depots impacts health.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23226283</pmid><doi>10.1371/journal.pone.0050428</doi><tpages>e50428</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-11, Vol.7 (11), p.e50428 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1351067175 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adipose tissue Adipose Tissue - pathology Adiposity Adolescent Adult Adults Biology Black or African American Black People Body Composition Body mass Body Mass Index Body size Diabetes mellitus Enlargement Exposure Female Geriatrics Hazards Health aspects Health risk assessment Health risks Hip Humans Indicators Insulin resistance Male Mathematical models Medicine Men Mexican Americans Middle Aged Mortality Nutrition Nutrition Surveys Obesity - ethnology Obesity - mortality Obesity - pathology Older people Physiological aspects Population characteristics Predictions Prognosis Quartiles Risk assessment Risk Factors Sex Sex Factors Smoking Social and Behavioral Sciences Social Class Socioeconomic factors Surveys Survival Rate Thigh Tobacco Triglycerides Type 2 diabetes United States - epidemiology Waist Circumference Waist-Hip Ratio White People |
title | Differences between adiposity indicators for predicting all-cause mortality in a representative sample of United States non-elderly adults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20between%20adiposity%20indicators%20for%20predicting%20all-cause%20mortality%20in%20a%20representative%20sample%20of%20United%20States%20non-elderly%20adults&rft.jtitle=PloS%20one&rft.au=Kahn,%20Henry%20S&rft.date=2012-11-30&rft.volume=7&rft.issue=11&rft.spage=e50428&rft.pages=e50428-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0050428&rft_dat=%3Cgale_plos_%3EA476993490%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1351067175&rft_id=info:pmid/23226283&rft_galeid=A476993490&rft_doaj_id=oai_doaj_org_article_37ac6cca48104acd963d827a4972a9fb&rfr_iscdi=true |