Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts

Prevention of obesity should start as early as possible after birth. We aimed to build clinically useful equations estimating the risk of later obesity in newborns, as a first step towards focused early prevention against the global obesity epidemic. We analyzed the lifetime Northern Finland Birth C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e49919-e49919
Hauptverfasser: Morandi, Anita, Meyre, David, Lobbens, Stéphane, Kleinman, Ken, Kaakinen, Marika, Rifas-Shiman, Sheryl L, Vatin, Vincent, Gaget, Stefan, Pouta, Anneli, Hartikainen, Anna-Liisa, Laitinen, Jaana, Ruokonen, Aimo, Das, Shikta, Khan, Anokhi Ali, Elliott, Paul, Maffeis, Claudio, Gillman, Matthew W, Järvelin, Marjo-Riitta, Froguel, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e49919
container_issue 11
container_start_page e49919
container_title PloS one
container_volume 7
creator Morandi, Anita
Meyre, David
Lobbens, Stéphane
Kleinman, Ken
Kaakinen, Marika
Rifas-Shiman, Sheryl L
Vatin, Vincent
Gaget, Stefan
Pouta, Anneli
Hartikainen, Anna-Liisa
Laitinen, Jaana
Ruokonen, Aimo
Das, Shikta
Khan, Anokhi Ali
Elliott, Paul
Maffeis, Claudio
Gillman, Matthew W
Järvelin, Marjo-Riitta
Froguel, Philippe
description Prevention of obesity should start as early as possible after birth. We aimed to build clinically useful equations estimating the risk of later obesity in newborns, as a first step towards focused early prevention against the global obesity epidemic. We analyzed the lifetime Northern Finland Birth Cohort 1986 (NFBC1986) (N = 4,032) to draw predictive equations for childhood and adolescent obesity from traditional risk factors (parental BMI, birth weight, maternal gestational weight gain, behaviour and social indicators), and a genetic score built from 39 BMI/obesity-associated polymorphisms. We performed validation analyses in a retrospective cohort of 1,503 Italian children and in a prospective cohort of 1,032 U.S. children. In the NFBC1986, the cumulative accuracy of traditional risk factors predicting childhood obesity, adolescent obesity, and childhood obesity persistent into adolescence was good: AUROC = 0·78[0·74-0.82], 0·75[0·71-0·79] and 0·85[0·80-0·90] respectively (all p
doi_str_mv 10.1371/journal.pone.0049919
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1350901856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477008463</galeid><doaj_id>oai_doaj_org_article_22a0c8ef78744a27a22e4b7f40b8d0b3</doaj_id><sourcerecordid>A477008463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6f714c406b9b1077808426b683646fe4e0562ceeee73bdcf9ad336096e6a5e3a3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBYQkJw2MVf6yQckKqqwEqVKvF1tRzH3rh4M4vtAP33OGxabVAPOIdYk2dez7zxFMVTgpeEleTNFQyhV365g94sMeZ1Tep7xTGpGV0Iitn9g_1R8SjGK4xXrBLiYXFEGcW1INVxoc9jcluVHPQILOrNrwZCj4KL35GFgHTnfIvyRrXgTdSmTwgaE126fotyIEIfkQ2wRR76jUtD63JRqHEhdUhDByHFx8UDq3w0T6b3SfH1_fmXs4-Li8sP67PTi4UWNU0LYUvCNceiqRuCy7LCFaeiERUTXFjDDV4Jqk1eJWtabWvVMiZyH0aolWGKnRTP97o7D1FO_kRJ2ArXmFQrkYn1nmhBXcldyJ2HawnKyb8BCBupQnLaG0mpwroytqxKzhUtFaWGN6XluKla3LCs9W46bWi2ph2dCcrPROdfetfJDfyUYzmE8SzwahII8GMwMcmtywZ7r3oDQ66b5sUYX-GMvvgHvbu7idqo3IDrLeRz9SgqT3lZ4uynGOte3kHlpzVbp_Nlsi7HZwmvZwmZSeZ32qghRrn-_On_2ctvc_blAdsZ5VMXwQ_jXYxzkO9BHSDGYOytyQTLcRZu3JDjLMhpFnLas8MfdJt0c_nZH7tYBHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350901856</pqid></control><display><type>article</type><title>Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Morandi, Anita ; Meyre, David ; Lobbens, Stéphane ; Kleinman, Ken ; Kaakinen, Marika ; Rifas-Shiman, Sheryl L ; Vatin, Vincent ; Gaget, Stefan ; Pouta, Anneli ; Hartikainen, Anna-Liisa ; Laitinen, Jaana ; Ruokonen, Aimo ; Das, Shikta ; Khan, Anokhi Ali ; Elliott, Paul ; Maffeis, Claudio ; Gillman, Matthew W ; Järvelin, Marjo-Riitta ; Froguel, Philippe</creator><creatorcontrib>Morandi, Anita ; Meyre, David ; Lobbens, Stéphane ; Kleinman, Ken ; Kaakinen, Marika ; Rifas-Shiman, Sheryl L ; Vatin, Vincent ; Gaget, Stefan ; Pouta, Anneli ; Hartikainen, Anna-Liisa ; Laitinen, Jaana ; Ruokonen, Aimo ; Das, Shikta ; Khan, Anokhi Ali ; Elliott, Paul ; Maffeis, Claudio ; Gillman, Matthew W ; Järvelin, Marjo-Riitta ; Froguel, Philippe</creatorcontrib><description>Prevention of obesity should start as early as possible after birth. We aimed to build clinically useful equations estimating the risk of later obesity in newborns, as a first step towards focused early prevention against the global obesity epidemic. We analyzed the lifetime Northern Finland Birth Cohort 1986 (NFBC1986) (N = 4,032) to draw predictive equations for childhood and adolescent obesity from traditional risk factors (parental BMI, birth weight, maternal gestational weight gain, behaviour and social indicators), and a genetic score built from 39 BMI/obesity-associated polymorphisms. We performed validation analyses in a retrospective cohort of 1,503 Italian children and in a prospective cohort of 1,032 U.S. children. In the NFBC1986, the cumulative accuracy of traditional risk factors predicting childhood obesity, adolescent obesity, and childhood obesity persistent into adolescence was good: AUROC = 0·78[0·74-0.82], 0·75[0·71-0·79] and 0·85[0·80-0·90] respectively (all p&lt;0·001). Adding the genetic score produced discrimination improvements ≤1%. The NFBC1986 equation for childhood obesity remained acceptably accurate when applied to the Italian and the U.S. cohort (AUROC = 0·70[0·63-0·77] and 0·73[0·67-0·80] respectively) and the two additional equations for childhood obesity newly drawn from the Italian and the U.S. datasets showed good accuracy in respective cohorts (AUROC = 0·74[0·69-0·79] and 0·79[0·73-0·84]) (all p&lt;0·001). The three equations for childhood obesity were converted into simple Excel risk calculators for potential clinical use. This study provides the first example of handy tools for predicting childhood obesity in newborns by means of easily recorded information, while it shows that currently known genetic variants have very little usefulness for such prediction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0049919</identifier><identifier>PMID: 23209618</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adolescent obesity ; Adolescents ; Adult ; Age ; Birth Weight ; Body mass ; Body Mass Index ; Calculators ; Cardiovascular disease ; Child ; Child development ; Child health ; Childbirth &amp; labor ; Childhood obesity ; Children ; Clinical medicine ; Cohort Studies ; Colorectal cancer ; Diabetes ; Disease prevention ; Epidemics ; Epidemiology ; Female ; Finland - epidemiology ; Genetic aspects ; Genetic counseling ; Genetic diversity ; Genetic polymorphisms ; Genetic variance ; Gynecology ; Health sciences ; Humans ; Logistic Models ; Male ; Maternal behavior ; Mathematical analysis ; Mathematical models ; Medicine ; Middle Aged ; Neonates ; Newborn infants ; Nutrition ; Obesity ; Obesity - epidemiology ; Obesity - prevention &amp; control ; Obstetrics ; Pediatrics ; Predictions ; Prevention ; Public health ; Risk ; Risk analysis ; Risk factors ; Social behavior ; Sociodemographics ; Teenagers ; Type 2 diabetes ; Whites ; Young Adult</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e49919-e49919</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Morandi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Morandi et al 2012 Morandi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6f714c406b9b1077808426b683646fe4e0562ceeee73bdcf9ad336096e6a5e3a3</citedby><cites>FETCH-LOGICAL-c692t-6f714c406b9b1077808426b683646fe4e0562ceeee73bdcf9ad336096e6a5e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509134/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509134/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23209618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morandi, Anita</creatorcontrib><creatorcontrib>Meyre, David</creatorcontrib><creatorcontrib>Lobbens, Stéphane</creatorcontrib><creatorcontrib>Kleinman, Ken</creatorcontrib><creatorcontrib>Kaakinen, Marika</creatorcontrib><creatorcontrib>Rifas-Shiman, Sheryl L</creatorcontrib><creatorcontrib>Vatin, Vincent</creatorcontrib><creatorcontrib>Gaget, Stefan</creatorcontrib><creatorcontrib>Pouta, Anneli</creatorcontrib><creatorcontrib>Hartikainen, Anna-Liisa</creatorcontrib><creatorcontrib>Laitinen, Jaana</creatorcontrib><creatorcontrib>Ruokonen, Aimo</creatorcontrib><creatorcontrib>Das, Shikta</creatorcontrib><creatorcontrib>Khan, Anokhi Ali</creatorcontrib><creatorcontrib>Elliott, Paul</creatorcontrib><creatorcontrib>Maffeis, Claudio</creatorcontrib><creatorcontrib>Gillman, Matthew W</creatorcontrib><creatorcontrib>Järvelin, Marjo-Riitta</creatorcontrib><creatorcontrib>Froguel, Philippe</creatorcontrib><title>Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Prevention of obesity should start as early as possible after birth. We aimed to build clinically useful equations estimating the risk of later obesity in newborns, as a first step towards focused early prevention against the global obesity epidemic. We analyzed the lifetime Northern Finland Birth Cohort 1986 (NFBC1986) (N = 4,032) to draw predictive equations for childhood and adolescent obesity from traditional risk factors (parental BMI, birth weight, maternal gestational weight gain, behaviour and social indicators), and a genetic score built from 39 BMI/obesity-associated polymorphisms. We performed validation analyses in a retrospective cohort of 1,503 Italian children and in a prospective cohort of 1,032 U.S. children. In the NFBC1986, the cumulative accuracy of traditional risk factors predicting childhood obesity, adolescent obesity, and childhood obesity persistent into adolescence was good: AUROC = 0·78[0·74-0.82], 0·75[0·71-0·79] and 0·85[0·80-0·90] respectively (all p&lt;0·001). Adding the genetic score produced discrimination improvements ≤1%. The NFBC1986 equation for childhood obesity remained acceptably accurate when applied to the Italian and the U.S. cohort (AUROC = 0·70[0·63-0·77] and 0·73[0·67-0·80] respectively) and the two additional equations for childhood obesity newly drawn from the Italian and the U.S. datasets showed good accuracy in respective cohorts (AUROC = 0·74[0·69-0·79] and 0·79[0·73-0·84]) (all p&lt;0·001). The three equations for childhood obesity were converted into simple Excel risk calculators for potential clinical use. This study provides the first example of handy tools for predicting childhood obesity in newborns by means of easily recorded information, while it shows that currently known genetic variants have very little usefulness for such prediction.</description><subject>Adolescent</subject><subject>Adolescent obesity</subject><subject>Adolescents</subject><subject>Adult</subject><subject>Age</subject><subject>Birth Weight</subject><subject>Body mass</subject><subject>Body Mass Index</subject><subject>Calculators</subject><subject>Cardiovascular disease</subject><subject>Child</subject><subject>Child development</subject><subject>Child health</subject><subject>Childbirth &amp; labor</subject><subject>Childhood obesity</subject><subject>Children</subject><subject>Clinical medicine</subject><subject>Cohort Studies</subject><subject>Colorectal cancer</subject><subject>Diabetes</subject><subject>Disease prevention</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Finland - epidemiology</subject><subject>Genetic aspects</subject><subject>Genetic counseling</subject><subject>Genetic diversity</subject><subject>Genetic polymorphisms</subject><subject>Genetic variance</subject><subject>Gynecology</subject><subject>Health sciences</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Maternal behavior</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Middle Aged</subject><subject>Neonates</subject><subject>Newborn infants</subject><subject>Nutrition</subject><subject>Obesity</subject><subject>Obesity - epidemiology</subject><subject>Obesity - prevention &amp; control</subject><subject>Obstetrics</subject><subject>Pediatrics</subject><subject>Predictions</subject><subject>Prevention</subject><subject>Public health</subject><subject>Risk</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Social behavior</subject><subject>Sociodemographics</subject><subject>Teenagers</subject><subject>Type 2 diabetes</subject><subject>Whites</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBYQkJw2MVf6yQckKqqwEqVKvF1tRzH3rh4M4vtAP33OGxabVAPOIdYk2dez7zxFMVTgpeEleTNFQyhV365g94sMeZ1Tep7xTGpGV0Iitn9g_1R8SjGK4xXrBLiYXFEGcW1INVxoc9jcluVHPQILOrNrwZCj4KL35GFgHTnfIvyRrXgTdSmTwgaE126fotyIEIfkQ2wRR76jUtD63JRqHEhdUhDByHFx8UDq3w0T6b3SfH1_fmXs4-Li8sP67PTi4UWNU0LYUvCNceiqRuCy7LCFaeiERUTXFjDDV4Jqk1eJWtabWvVMiZyH0aolWGKnRTP97o7D1FO_kRJ2ArXmFQrkYn1nmhBXcldyJ2HawnKyb8BCBupQnLaG0mpwroytqxKzhUtFaWGN6XluKla3LCs9W46bWi2ph2dCcrPROdfetfJDfyUYzmE8SzwahII8GMwMcmtywZ7r3oDQ66b5sUYX-GMvvgHvbu7idqo3IDrLeRz9SgqT3lZ4uynGOte3kHlpzVbp_Nlsi7HZwmvZwmZSeZ32qghRrn-_On_2ctvc_blAdsZ5VMXwQ_jXYxzkO9BHSDGYOytyQTLcRZu3JDjLMhpFnLas8MfdJt0c_nZH7tYBHw</recordid><startdate>20121128</startdate><enddate>20121128</enddate><creator>Morandi, Anita</creator><creator>Meyre, David</creator><creator>Lobbens, Stéphane</creator><creator>Kleinman, Ken</creator><creator>Kaakinen, Marika</creator><creator>Rifas-Shiman, Sheryl L</creator><creator>Vatin, Vincent</creator><creator>Gaget, Stefan</creator><creator>Pouta, Anneli</creator><creator>Hartikainen, Anna-Liisa</creator><creator>Laitinen, Jaana</creator><creator>Ruokonen, Aimo</creator><creator>Das, Shikta</creator><creator>Khan, Anokhi Ali</creator><creator>Elliott, Paul</creator><creator>Maffeis, Claudio</creator><creator>Gillman, Matthew W</creator><creator>Järvelin, Marjo-Riitta</creator><creator>Froguel, Philippe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121128</creationdate><title>Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts</title><author>Morandi, Anita ; Meyre, David ; Lobbens, Stéphane ; Kleinman, Ken ; Kaakinen, Marika ; Rifas-Shiman, Sheryl L ; Vatin, Vincent ; Gaget, Stefan ; Pouta, Anneli ; Hartikainen, Anna-Liisa ; Laitinen, Jaana ; Ruokonen, Aimo ; Das, Shikta ; Khan, Anokhi Ali ; Elliott, Paul ; Maffeis, Claudio ; Gillman, Matthew W ; Järvelin, Marjo-Riitta ; Froguel, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6f714c406b9b1077808426b683646fe4e0562ceeee73bdcf9ad336096e6a5e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adolescent</topic><topic>Adolescent obesity</topic><topic>Adolescents</topic><topic>Adult</topic><topic>Age</topic><topic>Birth Weight</topic><topic>Body mass</topic><topic>Body Mass Index</topic><topic>Calculators</topic><topic>Cardiovascular disease</topic><topic>Child</topic><topic>Child development</topic><topic>Child health</topic><topic>Childbirth &amp; labor</topic><topic>Childhood obesity</topic><topic>Children</topic><topic>Clinical medicine</topic><topic>Cohort Studies</topic><topic>Colorectal cancer</topic><topic>Diabetes</topic><topic>Disease prevention</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Finland - epidemiology</topic><topic>Genetic aspects</topic><topic>Genetic counseling</topic><topic>Genetic diversity</topic><topic>Genetic polymorphisms</topic><topic>Genetic variance</topic><topic>Gynecology</topic><topic>Health sciences</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Maternal behavior</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Middle Aged</topic><topic>Neonates</topic><topic>Newborn infants</topic><topic>Nutrition</topic><topic>Obesity</topic><topic>Obesity - epidemiology</topic><topic>Obesity - prevention &amp; control</topic><topic>Obstetrics</topic><topic>Pediatrics</topic><topic>Predictions</topic><topic>Prevention</topic><topic>Public health</topic><topic>Risk</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Social behavior</topic><topic>Sociodemographics</topic><topic>Teenagers</topic><topic>Type 2 diabetes</topic><topic>Whites</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morandi, Anita</creatorcontrib><creatorcontrib>Meyre, David</creatorcontrib><creatorcontrib>Lobbens, Stéphane</creatorcontrib><creatorcontrib>Kleinman, Ken</creatorcontrib><creatorcontrib>Kaakinen, Marika</creatorcontrib><creatorcontrib>Rifas-Shiman, Sheryl L</creatorcontrib><creatorcontrib>Vatin, Vincent</creatorcontrib><creatorcontrib>Gaget, Stefan</creatorcontrib><creatorcontrib>Pouta, Anneli</creatorcontrib><creatorcontrib>Hartikainen, Anna-Liisa</creatorcontrib><creatorcontrib>Laitinen, Jaana</creatorcontrib><creatorcontrib>Ruokonen, Aimo</creatorcontrib><creatorcontrib>Das, Shikta</creatorcontrib><creatorcontrib>Khan, Anokhi Ali</creatorcontrib><creatorcontrib>Elliott, Paul</creatorcontrib><creatorcontrib>Maffeis, Claudio</creatorcontrib><creatorcontrib>Gillman, Matthew W</creatorcontrib><creatorcontrib>Järvelin, Marjo-Riitta</creatorcontrib><creatorcontrib>Froguel, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morandi, Anita</au><au>Meyre, David</au><au>Lobbens, Stéphane</au><au>Kleinman, Ken</au><au>Kaakinen, Marika</au><au>Rifas-Shiman, Sheryl L</au><au>Vatin, Vincent</au><au>Gaget, Stefan</au><au>Pouta, Anneli</au><au>Hartikainen, Anna-Liisa</au><au>Laitinen, Jaana</au><au>Ruokonen, Aimo</au><au>Das, Shikta</au><au>Khan, Anokhi Ali</au><au>Elliott, Paul</au><au>Maffeis, Claudio</au><au>Gillman, Matthew W</au><au>Järvelin, Marjo-Riitta</au><au>Froguel, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-28</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e49919</spage><epage>e49919</epage><pages>e49919-e49919</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Prevention of obesity should start as early as possible after birth. We aimed to build clinically useful equations estimating the risk of later obesity in newborns, as a first step towards focused early prevention against the global obesity epidemic. We analyzed the lifetime Northern Finland Birth Cohort 1986 (NFBC1986) (N = 4,032) to draw predictive equations for childhood and adolescent obesity from traditional risk factors (parental BMI, birth weight, maternal gestational weight gain, behaviour and social indicators), and a genetic score built from 39 BMI/obesity-associated polymorphisms. We performed validation analyses in a retrospective cohort of 1,503 Italian children and in a prospective cohort of 1,032 U.S. children. In the NFBC1986, the cumulative accuracy of traditional risk factors predicting childhood obesity, adolescent obesity, and childhood obesity persistent into adolescence was good: AUROC = 0·78[0·74-0.82], 0·75[0·71-0·79] and 0·85[0·80-0·90] respectively (all p&lt;0·001). Adding the genetic score produced discrimination improvements ≤1%. The NFBC1986 equation for childhood obesity remained acceptably accurate when applied to the Italian and the U.S. cohort (AUROC = 0·70[0·63-0·77] and 0·73[0·67-0·80] respectively) and the two additional equations for childhood obesity newly drawn from the Italian and the U.S. datasets showed good accuracy in respective cohorts (AUROC = 0·74[0·69-0·79] and 0·79[0·73-0·84]) (all p&lt;0·001). The three equations for childhood obesity were converted into simple Excel risk calculators for potential clinical use. This study provides the first example of handy tools for predicting childhood obesity in newborns by means of easily recorded information, while it shows that currently known genetic variants have very little usefulness for such prediction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23209618</pmid><doi>10.1371/journal.pone.0049919</doi><tpages>e49919</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-11, Vol.7 (11), p.e49919-e49919
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1350901856
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adolescent
Adolescent obesity
Adolescents
Adult
Age
Birth Weight
Body mass
Body Mass Index
Calculators
Cardiovascular disease
Child
Child development
Child health
Childbirth & labor
Childhood obesity
Children
Clinical medicine
Cohort Studies
Colorectal cancer
Diabetes
Disease prevention
Epidemics
Epidemiology
Female
Finland - epidemiology
Genetic aspects
Genetic counseling
Genetic diversity
Genetic polymorphisms
Genetic variance
Gynecology
Health sciences
Humans
Logistic Models
Male
Maternal behavior
Mathematical analysis
Mathematical models
Medicine
Middle Aged
Neonates
Newborn infants
Nutrition
Obesity
Obesity - epidemiology
Obesity - prevention & control
Obstetrics
Pediatrics
Predictions
Prevention
Public health
Risk
Risk analysis
Risk factors
Social behavior
Sociodemographics
Teenagers
Type 2 diabetes
Whites
Young Adult
title Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20newborn%20risk%20for%20child%20or%20adolescent%20obesity:%20lessons%20from%20longitudinal%20birth%20cohorts&rft.jtitle=PloS%20one&rft.au=Morandi,%20Anita&rft.date=2012-11-28&rft.volume=7&rft.issue=11&rft.spage=e49919&rft.epage=e49919&rft.pages=e49919-e49919&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0049919&rft_dat=%3Cgale_plos_%3EA477008463%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350901856&rft_id=info:pmid/23209618&rft_galeid=A477008463&rft_doaj_id=oai_doaj_org_article_22a0c8ef78744a27a22e4b7f40b8d0b3&rfr_iscdi=true