Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex

Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e50539-e50539
Hauptverfasser: Laudanski, Jonathan, Edeline, Jean-Marc, Huetz, Chloé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e50539
container_issue 11
container_start_page e50539
container_title PloS one
container_volume 7
creator Laudanski, Jonathan
Edeline, Jean-Marc
Huetz, Chloé
description Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRF(voc)) and DMR-derived STRFs (STRF(dmr)), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRF(voc) predicted neural responses to vocalizations more accurately than STRF(dmr) predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRF(voc) and STRF(dmr). Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.
doi_str_mv 10.1371/journal.pone.0050539
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1350901814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477013813</galeid><doaj_id>oai_doaj_org_article_e8a6f78925eb4b25b2d00d12720ddc98</doaj_id><sourcerecordid>A477013813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-9622973d9f4f04d8585b4a0163e502f3c6055fa34cced3d2e3254e02cadbf89c3</originalsourceid><addsrcrecordid>eNqNk1tr2zAUx83YWLtu32BshsFYH5LpYvnyMgjdpYFAYbdXIUtHiYJtuZKctd9-8uKWpPRh9oPlo9__L50jnSR5jdEc0wJ_3NrBdaKZ97aDOUIMMVo9SU5xRcksJ4g-PRifJC-830aIlnn-PDkhlKCqKPBpcvPZaA0OOgk-rSH8AehS34MMzs4CtL11okkdSOiD2UGqDTTKpwpc_FOpdrZNhQtGG2kiKDqVdiIMo8gH0w6NSU2Xhg2kYlAmWHebSusC3LxMnmnReHg1fc-SX1-__Ly4nK2uvi0vFquZLCoSZlVOSFVQVelMo0yVrGR1JhDOKTBENJU5YkwLmkkJiioClLAMEJFC1bqsJD1L3u59-8Z6PhXNc0wZqhAucRaJ5Z5QVmx570wr3C23wvB_AevWfMxQNsChFLkuyoowqLOasJoohBQmBUFKyaqMXp-m1Ya6BSWhC7EUR6bHM53Z8LXd8bidIiYcDc73BpsHssvFio8xhHFJScV2OLIfpsWcvR7AB94aL6FpRAd2iDmS-FCaFyyi7x6gj1diotYiJms6beMe5WjKF1lRIExLTCM1f4SKr4LWyHgbtYnxI8H5kSAy8QKEtRi858sf3_-fvfp9zL4_YDcgmrDxthmCsZ0_BrM9KJ313oG-ryxGfGymu2rwsZn41ExR9ubwMO9Fd91D_wJgMBpT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350901814</pqid></control><display><type>article</type><title>Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Laudanski, Jonathan ; Edeline, Jean-Marc ; Huetz, Chloé</creator><creatorcontrib>Laudanski, Jonathan ; Edeline, Jean-Marc ; Huetz, Chloé</creatorcontrib><description>Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRF(voc)) and DMR-derived STRFs (STRF(dmr)), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRF(voc) predicted neural responses to vocalizations more accurately than STRF(dmr) predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRF(voc) and STRF(dmr). Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0050539</identifier><identifier>PMID: 23209771</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acoustic Stimulation ; Acoustics ; Action Potentials ; Action Potentials - physiology ; Animals ; Auditory Cortex ; Auditory Cortex - physiology ; Auditory Perception ; Auditory Perception - physiology ; Biology ; Brain ; Cognitive Sciences ; Communication ; Computer simulation ; Cortex (auditory) ; Cortex (temporal) ; Electrodes ; Firing pattern ; Frequency ; Guinea Pigs ; Information processing ; Latency ; Life Sciences ; Medicine ; Models, Neurological ; Neurobiology ; Neurons ; Neurons - metabolism ; Neurons and Cognition ; Neurophysiology ; Neurosciences ; Nonlinear systems ; Poisson density functions ; Psychology and behavior ; Recording sessions ; Stimuli ; Studies ; Temporal variations ; Vocalization behavior</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e50539-e50539</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Laudanski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2012 Laudanski et al 2012 Laudanski et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-9622973d9f4f04d8585b4a0163e502f3c6055fa34cced3d2e3254e02cadbf89c3</citedby><cites>FETCH-LOGICAL-c792t-9622973d9f4f04d8585b4a0163e502f3c6055fa34cced3d2e3254e02cadbf89c3</cites><orcidid>0000-0002-0848-2337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507792/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507792/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23209771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01183295$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laudanski, Jonathan</creatorcontrib><creatorcontrib>Edeline, Jean-Marc</creatorcontrib><creatorcontrib>Huetz, Chloé</creatorcontrib><title>Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRF(voc)) and DMR-derived STRFs (STRF(dmr)), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRF(voc) predicted neural responses to vocalizations more accurately than STRF(dmr) predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRF(voc) and STRF(dmr). Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.</description><subject>Acoustic Stimulation</subject><subject>Acoustics</subject><subject>Action Potentials</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Auditory Cortex</subject><subject>Auditory Cortex - physiology</subject><subject>Auditory Perception</subject><subject>Auditory Perception - physiology</subject><subject>Biology</subject><subject>Brain</subject><subject>Cognitive Sciences</subject><subject>Communication</subject><subject>Computer simulation</subject><subject>Cortex (auditory)</subject><subject>Cortex (temporal)</subject><subject>Electrodes</subject><subject>Firing pattern</subject><subject>Frequency</subject><subject>Guinea Pigs</subject><subject>Information processing</subject><subject>Latency</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons and Cognition</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Nonlinear systems</subject><subject>Poisson density functions</subject><subject>Psychology and behavior</subject><subject>Recording sessions</subject><subject>Stimuli</subject><subject>Studies</subject><subject>Temporal variations</subject><subject>Vocalization behavior</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr2zAUx83YWLtu32BshsFYH5LpYvnyMgjdpYFAYbdXIUtHiYJtuZKctd9-8uKWpPRh9oPlo9__L50jnSR5jdEc0wJ_3NrBdaKZ97aDOUIMMVo9SU5xRcksJ4g-PRifJC-830aIlnn-PDkhlKCqKPBpcvPZaA0OOgk-rSH8AehS34MMzs4CtL11okkdSOiD2UGqDTTKpwpc_FOpdrZNhQtGG2kiKDqVdiIMo8gH0w6NSU2Xhg2kYlAmWHebSusC3LxMnmnReHg1fc-SX1-__Ly4nK2uvi0vFquZLCoSZlVOSFVQVelMo0yVrGR1JhDOKTBENJU5YkwLmkkJiioClLAMEJFC1bqsJD1L3u59-8Z6PhXNc0wZqhAucRaJ5Z5QVmx570wr3C23wvB_AevWfMxQNsChFLkuyoowqLOasJoohBQmBUFKyaqMXp-m1Ya6BSWhC7EUR6bHM53Z8LXd8bidIiYcDc73BpsHssvFio8xhHFJScV2OLIfpsWcvR7AB94aL6FpRAd2iDmS-FCaFyyi7x6gj1diotYiJms6beMe5WjKF1lRIExLTCM1f4SKr4LWyHgbtYnxI8H5kSAy8QKEtRi858sf3_-fvfp9zL4_YDcgmrDxthmCsZ0_BrM9KJ313oG-ryxGfGymu2rwsZn41ExR9ubwMO9Fd91D_wJgMBpT</recordid><startdate>20121127</startdate><enddate>20121127</enddate><creator>Laudanski, Jonathan</creator><creator>Edeline, Jean-Marc</creator><creator>Huetz, Chloé</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0848-2337</orcidid></search><sort><creationdate>20121127</creationdate><title>Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex</title><author>Laudanski, Jonathan ; Edeline, Jean-Marc ; Huetz, Chloé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-9622973d9f4f04d8585b4a0163e502f3c6055fa34cced3d2e3254e02cadbf89c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic Stimulation</topic><topic>Acoustics</topic><topic>Action Potentials</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Auditory Cortex</topic><topic>Auditory Cortex - physiology</topic><topic>Auditory Perception</topic><topic>Auditory Perception - physiology</topic><topic>Biology</topic><topic>Brain</topic><topic>Cognitive Sciences</topic><topic>Communication</topic><topic>Computer simulation</topic><topic>Cortex (auditory)</topic><topic>Cortex (temporal)</topic><topic>Electrodes</topic><topic>Firing pattern</topic><topic>Frequency</topic><topic>Guinea Pigs</topic><topic>Information processing</topic><topic>Latency</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons and Cognition</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Nonlinear systems</topic><topic>Poisson density functions</topic><topic>Psychology and behavior</topic><topic>Recording sessions</topic><topic>Stimuli</topic><topic>Studies</topic><topic>Temporal variations</topic><topic>Vocalization behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laudanski, Jonathan</creatorcontrib><creatorcontrib>Edeline, Jean-Marc</creatorcontrib><creatorcontrib>Huetz, Chloé</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laudanski, Jonathan</au><au>Edeline, Jean-Marc</au><au>Huetz, Chloé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-27</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e50539</spage><epage>e50539</epage><pages>e50539-e50539</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRF(voc)) and DMR-derived STRFs (STRF(dmr)), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRF(voc) predicted neural responses to vocalizations more accurately than STRF(dmr) predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRF(voc) and STRF(dmr). Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23209771</pmid><doi>10.1371/journal.pone.0050539</doi><tpages>e50539</tpages><orcidid>https://orcid.org/0000-0002-0848-2337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-11, Vol.7 (11), p.e50539-e50539
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1350901814
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acoustic Stimulation
Acoustics
Action Potentials
Action Potentials - physiology
Animals
Auditory Cortex
Auditory Cortex - physiology
Auditory Perception
Auditory Perception - physiology
Biology
Brain
Cognitive Sciences
Communication
Computer simulation
Cortex (auditory)
Cortex (temporal)
Electrodes
Firing pattern
Frequency
Guinea Pigs
Information processing
Latency
Life Sciences
Medicine
Models, Neurological
Neurobiology
Neurons
Neurons - metabolism
Neurons and Cognition
Neurophysiology
Neurosciences
Nonlinear systems
Poisson density functions
Psychology and behavior
Recording sessions
Stimuli
Studies
Temporal variations
Vocalization behavior
title Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20between%20spectro-temporal%20receptive%20fields%20derived%20from%20artificial%20and%20natural%20stimuli%20in%20the%20auditory%20cortex&rft.jtitle=PloS%20one&rft.au=Laudanski,%20Jonathan&rft.date=2012-11-27&rft.volume=7&rft.issue=11&rft.spage=e50539&rft.epage=e50539&rft.pages=e50539-e50539&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0050539&rft_dat=%3Cgale_plos_%3EA477013813%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350901814&rft_id=info:pmid/23209771&rft_galeid=A477013813&rft_doaj_id=oai_doaj_org_article_e8a6f78925eb4b25b2d00d12720ddc98&rfr_iscdi=true