Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates
In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is lo...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-11, Vol.7 (11), p.e49975-e49975 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e49975 |
---|---|
container_issue | 11 |
container_start_page | e49975 |
container_title | PloS one |
container_volume | 7 |
creator | Poliakov, Eugenia Gubin, Alexander N Stearn, Olivia Li, Yan Campos, Maria Mercedes Gentleman, Susan Rogozin, Igor B Redmond, T Michael |
description | In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates. |
doi_str_mv | 10.1371/journal.pone.0049975 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1350901670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477013807</galeid><doaj_id>oai_doaj_org_article_53942369cd914e799e5ba179fbe3d8c6</doaj_id><sourcerecordid>A477013807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrfmYSRovhGXxo7BQ0MXbkEnOtCkzk26SqdZfb9rOLh3ZC5OLhOR53-Sc5GTZS4ymmHL8Ye1636lmunEdTBEqhODlo-wcC0omjCD6-GR-lj0LYY1QSWeMPc3OCCVIMDI7z_zC26XtctWZHLau6aN1Xe7q3EO0nbMmt8G14O0fddhplV7ZDvwuT6It-AiVVxHyrQ29anK90w18zBMS89q7Nl-rXw2EcIKG59mTWjUBXgzjRXbz5fPN1bfJ9eLr_OryeqKZIHFSIVrxmugaUeC1LkmBFGG40rooaMFIYTDTnBhDaqUNB4SR4KbWHDhQRuhF9vpou2lckEO2gsS0RAJhxlEi5kfCOLWWG29b5XfSKSsPC84vpfLRpohkSUVBKBPaCFwAFwLKSmEu6gqomWmWvD4Np_VVC0ZDF71qRqbjnc6u5NJtZboOF8UsGbwbDLy77SFE2dqgoWlUB65P9yapUUIRT-ibf9CHoxuopUoB2K526Vy9N5WXBecI09nBa_oAlbqB1ur0tWqb1keC9yNBYiL8jkvVhyDnP77_P7v4OWbfnrArUE1cheE_hjFYHEHtXQge6vskYyT3lXGXDbmvDDlURpK9On2ge9FdKdC_KIwKtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350901670</pqid></control><display><type>article</type><title>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Poliakov, Eugenia ; Gubin, Alexander N ; Stearn, Olivia ; Li, Yan ; Campos, Maria Mercedes ; Gentleman, Susan ; Rogozin, Igor B ; Redmond, T Michael</creator><creatorcontrib>Poliakov, Eugenia ; Gubin, Alexander N ; Stearn, Olivia ; Li, Yan ; Campos, Maria Mercedes ; Gentleman, Susan ; Rogozin, Igor B ; Redmond, T Michael</creatorcontrib><description>In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0049975</identifier><identifier>PMID: 23209628</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyltransferase ; Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - genetics ; Amino Acid Sequence ; Analysis ; Animals ; beta-Carotene 15,15'-Monooxygenase - metabolism ; Bioinformatics ; Biology ; Carotene ; Carotenoids ; Catalysis ; Chromophores ; Ciona ; Ciona intestinalis ; cis-trans-Isomerases - chemistry ; cis-trans-Isomerases - genetics ; Cleavage ; Divergence ; Ductile-brittle transition ; Enzymatic activity ; Enzymes ; Epithelium ; Evolution ; Evolutionary biology ; Eye ; Fracture mechanics ; Genomes ; HEK293 Cells ; Homology ; Humans ; Immunofluorescence ; Isomerization ; Laboratories ; Lecithin ; Light levels ; Machinery ; Machinery and equipment ; Mammals ; Mass spectrometry ; Mass spectroscopy ; MicroRNAs ; Microscopy ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Monooxygenase ; Multigene Family ; Mutation ; Oxygenase ; Petromyzon marinus ; Photopigments ; Photoreceptors ; Phylogenetics ; Phylogeny ; Protein Conformation ; Proteins ; Retina ; Retinal pigment epithelium ; Retinal Pigment Epithelium - metabolism ; Retinaldehyde - biosynthesis ; Retinoids ; Retinoids - chemistry ; Retinoids - metabolism ; Retinol isomerase ; Sequence Alignment ; Studies ; Substrates ; Taxa ; Vertebrates ; Vertebrates - genetics ; Vertebrates - metabolism ; Vision, Ocular - physiology ; Vitamin A</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e49975-e49975</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</citedby><cites>FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507948/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507948/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23209628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poliakov, Eugenia</creatorcontrib><creatorcontrib>Gubin, Alexander N</creatorcontrib><creatorcontrib>Stearn, Olivia</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Campos, Maria Mercedes</creatorcontrib><creatorcontrib>Gentleman, Susan</creatorcontrib><creatorcontrib>Rogozin, Igor B</creatorcontrib><creatorcontrib>Redmond, T Michael</creatorcontrib><title>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.</description><subject>Acyltransferase</subject><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Animals</subject><subject>beta-Carotene 15,15'-Monooxygenase - metabolism</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Carotene</subject><subject>Carotenoids</subject><subject>Catalysis</subject><subject>Chromophores</subject><subject>Ciona</subject><subject>Ciona intestinalis</subject><subject>cis-trans-Isomerases - chemistry</subject><subject>cis-trans-Isomerases - genetics</subject><subject>Cleavage</subject><subject>Divergence</subject><subject>Ductile-brittle transition</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Epithelium</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Eye</subject><subject>Fracture mechanics</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Homology</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Isomerization</subject><subject>Laboratories</subject><subject>Lecithin</subject><subject>Light levels</subject><subject>Machinery</subject><subject>Machinery and equipment</subject><subject>Mammals</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>MicroRNAs</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Monooxygenase</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Oxygenase</subject><subject>Petromyzon marinus</subject><subject>Photopigments</subject><subject>Photoreceptors</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retinal pigment epithelium</subject><subject>Retinal Pigment Epithelium - metabolism</subject><subject>Retinaldehyde - biosynthesis</subject><subject>Retinoids</subject><subject>Retinoids - chemistry</subject><subject>Retinoids - metabolism</subject><subject>Retinol isomerase</subject><subject>Sequence Alignment</subject><subject>Studies</subject><subject>Substrates</subject><subject>Taxa</subject><subject>Vertebrates</subject><subject>Vertebrates - genetics</subject><subject>Vertebrates - metabolism</subject><subject>Vision, Ocular - physiology</subject><subject>Vitamin A</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrfmYSRovhGXxo7BQ0MXbkEnOtCkzk26SqdZfb9rOLh3ZC5OLhOR53-Sc5GTZS4ymmHL8Ye1636lmunEdTBEqhODlo-wcC0omjCD6-GR-lj0LYY1QSWeMPc3OCCVIMDI7z_zC26XtctWZHLau6aN1Xe7q3EO0nbMmt8G14O0fddhplV7ZDvwuT6It-AiVVxHyrQ29anK90w18zBMS89q7Nl-rXw2EcIKG59mTWjUBXgzjRXbz5fPN1bfJ9eLr_OryeqKZIHFSIVrxmugaUeC1LkmBFGG40rooaMFIYTDTnBhDaqUNB4SR4KbWHDhQRuhF9vpou2lckEO2gsS0RAJhxlEi5kfCOLWWG29b5XfSKSsPC84vpfLRpohkSUVBKBPaCFwAFwLKSmEu6gqomWmWvD4Np_VVC0ZDF71qRqbjnc6u5NJtZboOF8UsGbwbDLy77SFE2dqgoWlUB65P9yapUUIRT-ibf9CHoxuopUoB2K526Vy9N5WXBecI09nBa_oAlbqB1ur0tWqb1keC9yNBYiL8jkvVhyDnP77_P7v4OWbfnrArUE1cheE_hjFYHEHtXQge6vskYyT3lXGXDbmvDDlURpK9On2ge9FdKdC_KIwKtw</recordid><startdate>20121127</startdate><enddate>20121127</enddate><creator>Poliakov, Eugenia</creator><creator>Gubin, Alexander N</creator><creator>Stearn, Olivia</creator><creator>Li, Yan</creator><creator>Campos, Maria Mercedes</creator><creator>Gentleman, Susan</creator><creator>Rogozin, Igor B</creator><creator>Redmond, T Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121127</creationdate><title>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</title><author>Poliakov, Eugenia ; Gubin, Alexander N ; Stearn, Olivia ; Li, Yan ; Campos, Maria Mercedes ; Gentleman, Susan ; Rogozin, Igor B ; Redmond, T Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acyltransferase</topic><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Animals</topic><topic>beta-Carotene 15,15'-Monooxygenase - metabolism</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Carotene</topic><topic>Carotenoids</topic><topic>Catalysis</topic><topic>Chromophores</topic><topic>Ciona</topic><topic>Ciona intestinalis</topic><topic>cis-trans-Isomerases - chemistry</topic><topic>cis-trans-Isomerases - genetics</topic><topic>Cleavage</topic><topic>Divergence</topic><topic>Ductile-brittle transition</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Epithelium</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Eye</topic><topic>Fracture mechanics</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Homology</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Isomerization</topic><topic>Laboratories</topic><topic>Lecithin</topic><topic>Light levels</topic><topic>Machinery</topic><topic>Machinery and equipment</topic><topic>Mammals</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>MicroRNAs</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Monooxygenase</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Oxygenase</topic><topic>Petromyzon marinus</topic><topic>Photopigments</topic><topic>Photoreceptors</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retinal pigment epithelium</topic><topic>Retinal Pigment Epithelium - metabolism</topic><topic>Retinaldehyde - biosynthesis</topic><topic>Retinoids</topic><topic>Retinoids - chemistry</topic><topic>Retinoids - metabolism</topic><topic>Retinol isomerase</topic><topic>Sequence Alignment</topic><topic>Studies</topic><topic>Substrates</topic><topic>Taxa</topic><topic>Vertebrates</topic><topic>Vertebrates - genetics</topic><topic>Vertebrates - metabolism</topic><topic>Vision, Ocular - physiology</topic><topic>Vitamin A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poliakov, Eugenia</creatorcontrib><creatorcontrib>Gubin, Alexander N</creatorcontrib><creatorcontrib>Stearn, Olivia</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Campos, Maria Mercedes</creatorcontrib><creatorcontrib>Gentleman, Susan</creatorcontrib><creatorcontrib>Rogozin, Igor B</creatorcontrib><creatorcontrib>Redmond, T Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poliakov, Eugenia</au><au>Gubin, Alexander N</au><au>Stearn, Olivia</au><au>Li, Yan</au><au>Campos, Maria Mercedes</au><au>Gentleman, Susan</au><au>Rogozin, Igor B</au><au>Redmond, T Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-27</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e49975</spage><epage>e49975</epage><pages>e49975-e49975</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23209628</pmid><doi>10.1371/journal.pone.0049975</doi><tpages>e49975</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-11, Vol.7 (11), p.e49975-e49975 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1350901670 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acyltransferase Adaptor Proteins, Signal Transducing - chemistry Adaptor Proteins, Signal Transducing - genetics Amino Acid Sequence Analysis Animals beta-Carotene 15,15'-Monooxygenase - metabolism Bioinformatics Biology Carotene Carotenoids Catalysis Chromophores Ciona Ciona intestinalis cis-trans-Isomerases - chemistry cis-trans-Isomerases - genetics Cleavage Divergence Ductile-brittle transition Enzymatic activity Enzymes Epithelium Evolution Evolutionary biology Eye Fracture mechanics Genomes HEK293 Cells Homology Humans Immunofluorescence Isomerization Laboratories Lecithin Light levels Machinery Machinery and equipment Mammals Mass spectrometry Mass spectroscopy MicroRNAs Microscopy Models, Molecular Molecular biology Molecular Sequence Data Monooxygenase Multigene Family Mutation Oxygenase Petromyzon marinus Photopigments Photoreceptors Phylogenetics Phylogeny Protein Conformation Proteins Retina Retinal pigment epithelium Retinal Pigment Epithelium - metabolism Retinaldehyde - biosynthesis Retinoids Retinoids - chemistry Retinoids - metabolism Retinol isomerase Sequence Alignment Studies Substrates Taxa Vertebrates Vertebrates - genetics Vertebrates - metabolism Vision, Ocular - physiology Vitamin A |
title | Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20and%20evolution%20of%20retinoid%20isomerization%20machinery%20in%20vertebrate%20visual%20cycle:%20hint%20from%20jawless%20vertebrates&rft.jtitle=PloS%20one&rft.au=Poliakov,%20Eugenia&rft.date=2012-11-27&rft.volume=7&rft.issue=11&rft.spage=e49975&rft.epage=e49975&rft.pages=e49975-e49975&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0049975&rft_dat=%3Cgale_plos_%3EA477013807%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350901670&rft_id=info:pmid/23209628&rft_galeid=A477013807&rft_doaj_id=oai_doaj_org_article_53942369cd914e799e5ba179fbe3d8c6&rfr_iscdi=true |