Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates

In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-11, Vol.7 (11), p.e49975-e49975
Hauptverfasser: Poliakov, Eugenia, Gubin, Alexander N, Stearn, Olivia, Li, Yan, Campos, Maria Mercedes, Gentleman, Susan, Rogozin, Igor B, Redmond, T Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e49975
container_issue 11
container_start_page e49975
container_title PloS one
container_volume 7
creator Poliakov, Eugenia
Gubin, Alexander N
Stearn, Olivia
Li, Yan
Campos, Maria Mercedes
Gentleman, Susan
Rogozin, Igor B
Redmond, T Michael
description In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.
doi_str_mv 10.1371/journal.pone.0049975
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1350901670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477013807</galeid><doaj_id>oai_doaj_org_article_53942369cd914e799e5ba179fbe3d8c6</doaj_id><sourcerecordid>A477013807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrfmYSRovhGXxo7BQ0MXbkEnOtCkzk26SqdZfb9rOLh3ZC5OLhOR53-Sc5GTZS4ymmHL8Ye1636lmunEdTBEqhODlo-wcC0omjCD6-GR-lj0LYY1QSWeMPc3OCCVIMDI7z_zC26XtctWZHLau6aN1Xe7q3EO0nbMmt8G14O0fddhplV7ZDvwuT6It-AiVVxHyrQ29anK90w18zBMS89q7Nl-rXw2EcIKG59mTWjUBXgzjRXbz5fPN1bfJ9eLr_OryeqKZIHFSIVrxmugaUeC1LkmBFGG40rooaMFIYTDTnBhDaqUNB4SR4KbWHDhQRuhF9vpou2lckEO2gsS0RAJhxlEi5kfCOLWWG29b5XfSKSsPC84vpfLRpohkSUVBKBPaCFwAFwLKSmEu6gqomWmWvD4Np_VVC0ZDF71qRqbjnc6u5NJtZboOF8UsGbwbDLy77SFE2dqgoWlUB65P9yapUUIRT-ibf9CHoxuopUoB2K526Vy9N5WXBecI09nBa_oAlbqB1ur0tWqb1keC9yNBYiL8jkvVhyDnP77_P7v4OWbfnrArUE1cheE_hjFYHEHtXQge6vskYyT3lXGXDbmvDDlURpK9On2ge9FdKdC_KIwKtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350901670</pqid></control><display><type>article</type><title>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Poliakov, Eugenia ; Gubin, Alexander N ; Stearn, Olivia ; Li, Yan ; Campos, Maria Mercedes ; Gentleman, Susan ; Rogozin, Igor B ; Redmond, T Michael</creator><creatorcontrib>Poliakov, Eugenia ; Gubin, Alexander N ; Stearn, Olivia ; Li, Yan ; Campos, Maria Mercedes ; Gentleman, Susan ; Rogozin, Igor B ; Redmond, T Michael</creatorcontrib><description>In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0049975</identifier><identifier>PMID: 23209628</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyltransferase ; Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - genetics ; Amino Acid Sequence ; Analysis ; Animals ; beta-Carotene 15,15'-Monooxygenase - metabolism ; Bioinformatics ; Biology ; Carotene ; Carotenoids ; Catalysis ; Chromophores ; Ciona ; Ciona intestinalis ; cis-trans-Isomerases - chemistry ; cis-trans-Isomerases - genetics ; Cleavage ; Divergence ; Ductile-brittle transition ; Enzymatic activity ; Enzymes ; Epithelium ; Evolution ; Evolutionary biology ; Eye ; Fracture mechanics ; Genomes ; HEK293 Cells ; Homology ; Humans ; Immunofluorescence ; Isomerization ; Laboratories ; Lecithin ; Light levels ; Machinery ; Machinery and equipment ; Mammals ; Mass spectrometry ; Mass spectroscopy ; MicroRNAs ; Microscopy ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Monooxygenase ; Multigene Family ; Mutation ; Oxygenase ; Petromyzon marinus ; Photopigments ; Photoreceptors ; Phylogenetics ; Phylogeny ; Protein Conformation ; Proteins ; Retina ; Retinal pigment epithelium ; Retinal Pigment Epithelium - metabolism ; Retinaldehyde - biosynthesis ; Retinoids ; Retinoids - chemistry ; Retinoids - metabolism ; Retinol isomerase ; Sequence Alignment ; Studies ; Substrates ; Taxa ; Vertebrates ; Vertebrates - genetics ; Vertebrates - metabolism ; Vision, Ocular - physiology ; Vitamin A</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e49975-e49975</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</citedby><cites>FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507948/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507948/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23209628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poliakov, Eugenia</creatorcontrib><creatorcontrib>Gubin, Alexander N</creatorcontrib><creatorcontrib>Stearn, Olivia</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Campos, Maria Mercedes</creatorcontrib><creatorcontrib>Gentleman, Susan</creatorcontrib><creatorcontrib>Rogozin, Igor B</creatorcontrib><creatorcontrib>Redmond, T Michael</creatorcontrib><title>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.</description><subject>Acyltransferase</subject><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Animals</subject><subject>beta-Carotene 15,15'-Monooxygenase - metabolism</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Carotene</subject><subject>Carotenoids</subject><subject>Catalysis</subject><subject>Chromophores</subject><subject>Ciona</subject><subject>Ciona intestinalis</subject><subject>cis-trans-Isomerases - chemistry</subject><subject>cis-trans-Isomerases - genetics</subject><subject>Cleavage</subject><subject>Divergence</subject><subject>Ductile-brittle transition</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Epithelium</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Eye</subject><subject>Fracture mechanics</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Homology</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Isomerization</subject><subject>Laboratories</subject><subject>Lecithin</subject><subject>Light levels</subject><subject>Machinery</subject><subject>Machinery and equipment</subject><subject>Mammals</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>MicroRNAs</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Monooxygenase</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Oxygenase</subject><subject>Petromyzon marinus</subject><subject>Photopigments</subject><subject>Photoreceptors</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retinal pigment epithelium</subject><subject>Retinal Pigment Epithelium - metabolism</subject><subject>Retinaldehyde - biosynthesis</subject><subject>Retinoids</subject><subject>Retinoids - chemistry</subject><subject>Retinoids - metabolism</subject><subject>Retinol isomerase</subject><subject>Sequence Alignment</subject><subject>Studies</subject><subject>Substrates</subject><subject>Taxa</subject><subject>Vertebrates</subject><subject>Vertebrates - genetics</subject><subject>Vertebrates - metabolism</subject><subject>Vision, Ocular - physiology</subject><subject>Vitamin A</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3HX1H4gOCKIXrfmYSRovhGXxo7BQ0MXbkEnOtCkzk26SqdZfb9rOLh3ZC5OLhOR53-Sc5GTZS4ymmHL8Ye1636lmunEdTBEqhODlo-wcC0omjCD6-GR-lj0LYY1QSWeMPc3OCCVIMDI7z_zC26XtctWZHLau6aN1Xe7q3EO0nbMmt8G14O0fddhplV7ZDvwuT6It-AiVVxHyrQ29anK90w18zBMS89q7Nl-rXw2EcIKG59mTWjUBXgzjRXbz5fPN1bfJ9eLr_OryeqKZIHFSIVrxmugaUeC1LkmBFGG40rooaMFIYTDTnBhDaqUNB4SR4KbWHDhQRuhF9vpou2lckEO2gsS0RAJhxlEi5kfCOLWWG29b5XfSKSsPC84vpfLRpohkSUVBKBPaCFwAFwLKSmEu6gqomWmWvD4Np_VVC0ZDF71qRqbjnc6u5NJtZboOF8UsGbwbDLy77SFE2dqgoWlUB65P9yapUUIRT-ibf9CHoxuopUoB2K526Vy9N5WXBecI09nBa_oAlbqB1ur0tWqb1keC9yNBYiL8jkvVhyDnP77_P7v4OWbfnrArUE1cheE_hjFYHEHtXQge6vskYyT3lXGXDbmvDDlURpK9On2ge9FdKdC_KIwKtw</recordid><startdate>20121127</startdate><enddate>20121127</enddate><creator>Poliakov, Eugenia</creator><creator>Gubin, Alexander N</creator><creator>Stearn, Olivia</creator><creator>Li, Yan</creator><creator>Campos, Maria Mercedes</creator><creator>Gentleman, Susan</creator><creator>Rogozin, Igor B</creator><creator>Redmond, T Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121127</creationdate><title>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</title><author>Poliakov, Eugenia ; Gubin, Alexander N ; Stearn, Olivia ; Li, Yan ; Campos, Maria Mercedes ; Gentleman, Susan ; Rogozin, Igor B ; Redmond, T Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b03b7f2cf03e7fc5240a261bcc4434624d16c72dd2facd7e01097dfc7e7e3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acyltransferase</topic><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Animals</topic><topic>beta-Carotene 15,15'-Monooxygenase - metabolism</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Carotene</topic><topic>Carotenoids</topic><topic>Catalysis</topic><topic>Chromophores</topic><topic>Ciona</topic><topic>Ciona intestinalis</topic><topic>cis-trans-Isomerases - chemistry</topic><topic>cis-trans-Isomerases - genetics</topic><topic>Cleavage</topic><topic>Divergence</topic><topic>Ductile-brittle transition</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Epithelium</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Eye</topic><topic>Fracture mechanics</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Homology</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Isomerization</topic><topic>Laboratories</topic><topic>Lecithin</topic><topic>Light levels</topic><topic>Machinery</topic><topic>Machinery and equipment</topic><topic>Mammals</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>MicroRNAs</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Monooxygenase</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Oxygenase</topic><topic>Petromyzon marinus</topic><topic>Photopigments</topic><topic>Photoreceptors</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retinal pigment epithelium</topic><topic>Retinal Pigment Epithelium - metabolism</topic><topic>Retinaldehyde - biosynthesis</topic><topic>Retinoids</topic><topic>Retinoids - chemistry</topic><topic>Retinoids - metabolism</topic><topic>Retinol isomerase</topic><topic>Sequence Alignment</topic><topic>Studies</topic><topic>Substrates</topic><topic>Taxa</topic><topic>Vertebrates</topic><topic>Vertebrates - genetics</topic><topic>Vertebrates - metabolism</topic><topic>Vision, Ocular - physiology</topic><topic>Vitamin A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poliakov, Eugenia</creatorcontrib><creatorcontrib>Gubin, Alexander N</creatorcontrib><creatorcontrib>Stearn, Olivia</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Campos, Maria Mercedes</creatorcontrib><creatorcontrib>Gentleman, Susan</creatorcontrib><creatorcontrib>Rogozin, Igor B</creatorcontrib><creatorcontrib>Redmond, T Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poliakov, Eugenia</au><au>Gubin, Alexander N</au><au>Stearn, Olivia</au><au>Li, Yan</au><au>Campos, Maria Mercedes</au><au>Gentleman, Susan</au><au>Rogozin, Igor B</au><au>Redmond, T Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-27</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e49975</spage><epage>e49975</epage><pages>e49975-e49975</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23209628</pmid><doi>10.1371/journal.pone.0049975</doi><tpages>e49975</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-11, Vol.7 (11), p.e49975-e49975
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1350901670
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acyltransferase
Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - genetics
Amino Acid Sequence
Analysis
Animals
beta-Carotene 15,15'-Monooxygenase - metabolism
Bioinformatics
Biology
Carotene
Carotenoids
Catalysis
Chromophores
Ciona
Ciona intestinalis
cis-trans-Isomerases - chemistry
cis-trans-Isomerases - genetics
Cleavage
Divergence
Ductile-brittle transition
Enzymatic activity
Enzymes
Epithelium
Evolution
Evolutionary biology
Eye
Fracture mechanics
Genomes
HEK293 Cells
Homology
Humans
Immunofluorescence
Isomerization
Laboratories
Lecithin
Light levels
Machinery
Machinery and equipment
Mammals
Mass spectrometry
Mass spectroscopy
MicroRNAs
Microscopy
Models, Molecular
Molecular biology
Molecular Sequence Data
Monooxygenase
Multigene Family
Mutation
Oxygenase
Petromyzon marinus
Photopigments
Photoreceptors
Phylogenetics
Phylogeny
Protein Conformation
Proteins
Retina
Retinal pigment epithelium
Retinal Pigment Epithelium - metabolism
Retinaldehyde - biosynthesis
Retinoids
Retinoids - chemistry
Retinoids - metabolism
Retinol isomerase
Sequence Alignment
Studies
Substrates
Taxa
Vertebrates
Vertebrates - genetics
Vertebrates - metabolism
Vision, Ocular - physiology
Vitamin A
title Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20and%20evolution%20of%20retinoid%20isomerization%20machinery%20in%20vertebrate%20visual%20cycle:%20hint%20from%20jawless%20vertebrates&rft.jtitle=PloS%20one&rft.au=Poliakov,%20Eugenia&rft.date=2012-11-27&rft.volume=7&rft.issue=11&rft.spage=e49975&rft.epage=e49975&rft.pages=e49975-e49975&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0049975&rft_dat=%3Cgale_plos_%3EA477013807%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350901670&rft_id=info:pmid/23209628&rft_galeid=A477013807&rft_doaj_id=oai_doaj_org_article_53942369cd914e799e5ba179fbe3d8c6&rfr_iscdi=true