SNP set association analysis for genome-wide association studies

Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-05, Vol.8 (5), p.e62495-e62495
Hauptverfasser: Cai, Min, Dai, Hui, Qiu, Yongyong, Zhao, Yang, Zhang, Ruyang, Chu, Minjie, Dai, Juncheng, Hu, Zhibin, Shen, Hongbing, Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e62495
container_issue 5
container_start_page e62495
container_title PloS one
container_volume 8
creator Cai, Min
Dai, Hui
Qiu, Yongyong
Zhao, Yang
Zhang, Ruyang
Chu, Minjie
Dai, Juncheng
Hu, Zhibin
Shen, Hongbing
Chen, Feng
description Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and ≥ 2 causal SNPs model. Our simulation results show that all of these methods can control the type I error at the nominal significance level. SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer (NSCLC) in Han Chinese population.
doi_str_mv 10.1371/journal.pone.0062495
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1350377074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478436205</galeid><doaj_id>oai_doaj_org_article_c3f682fea4904c1298b87fa826043c74</doaj_id><sourcerecordid>A478436205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dfb0631ddb84e86e47ac5ce1b2c826a3d6b6d896112dcedf7a3cbae6631ab1863</originalsourceid><addsrcrecordid>eNqNkltv1DAQhSMEoqXwDxCshITgIYtvcZwXRFVxWamiiAKv1sSeZL3KxkucAP33ON202qA-ID_Ecr5zZsY-SfKUkiXlOX2z8UPXQrPc-RaXhEgmiuxeckwLzlLJCL9_sD9KHoWwISTjSsqHyRHjMlM5p8fJu8vPXxYB-wWE4I2D3vl2AdH3KriwqHy3qLH1W0x_O4szKPSDdRgeJw8qaAI-mb4nyfcP77-dfUrPLz6uzk7PUyML1qe2Konk1NpSCVQSRQ4mM0hLZhSTwK0spVWFpJRZg7bKgZsSUEYNlFRJfpI83_vuGh_0NHzQlGeE5znJRSRWe8J62Ohd57bQXWkPTl8f-K7W0PXONKgNr6RiFYIoiDCUFapUeQWxEyK4ufZ6O1Ubyi3Gjtq-g2ZmOv_TurWu_S_NpeAFy6LBq8mg8z8HDL3eumCwaaBFP-z7phmjjEX0xT_o3dNNVA1xANdWPtY1o6k-FbkSPL7zWHZ5BxWXxa0zMSmVi-czweuZIDI9_ulrGELQq8uv_89e_JizLw_YNULTr4NvhjE6YQ6KPWg6H0KH1e0lU6LHoN_chh6DrqegR9mzwwe6Fd0km_8Flr_33Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350377074</pqid></control><display><type>article</type><title>SNP set association analysis for genome-wide association studies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cai, Min ; Dai, Hui ; Qiu, Yongyong ; Zhao, Yang ; Zhang, Ruyang ; Chu, Minjie ; Dai, Juncheng ; Hu, Zhibin ; Shen, Hongbing ; Chen, Feng</creator><contributor>Chen, Lin</contributor><creatorcontrib>Cai, Min ; Dai, Hui ; Qiu, Yongyong ; Zhao, Yang ; Zhang, Ruyang ; Chu, Minjie ; Dai, Juncheng ; Hu, Zhibin ; Shen, Hongbing ; Chen, Feng ; Chen, Lin</creatorcontrib><description>Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and ≥ 2 causal SNPs model. Our simulation results show that all of these methods can control the type I error at the nominal significance level. SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer (NSCLC) in Han Chinese population.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062495</identifier><identifier>PMID: 23658731</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Analysis ; Asian Continental Ancestry Group ; Association analysis ; Biology ; Biomarkers ; Carcinoma, Non-Small-Cell Lung - ethnology ; Carcinoma, Non-Small-Cell Lung - genetics ; Chromosomes ; Computer Simulation ; Control methods ; Disease ; DNA-Binding Proteins - genetics ; Eigen values ; Eigenvalues ; Epidemiology ; Gene Frequency ; Genes ; Genetic aspects ; Genetic diversity ; Genetic variance ; Genome-wide association studies ; Genome-Wide Association Study - statistics &amp; numerical data ; Genomes ; Genomics ; Humans ; Laboratories ; Linkage Disequilibrium ; Lung cancer ; Lung diseases ; Lung Neoplasms - ethnology ; Lung Neoplasms - genetics ; Mathematics ; Medical prognosis ; Medical research ; Medicine ; Membrane Proteins - genetics ; Models, Genetic ; Neoplasm Proteins - genetics ; Non-small cell lung cancer ; Non-small cell lung carcinoma ; Polymorphism, Single Nucleotide ; Power ; Principal Component Analysis - methods ; Principal components analysis ; Public health ; Regression analysis ; Reproductive health ; Research Design ; Simulation ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Software ; Studies ; X-ray Repair Cross Complementing Protein 1</subject><ispartof>PloS one, 2013-05, Vol.8 (5), p.e62495-e62495</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Cai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Cai et al 2013 Cai et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dfb0631ddb84e86e47ac5ce1b2c826a3d6b6d896112dcedf7a3cbae6631ab1863</citedby><cites>FETCH-LOGICAL-c692t-dfb0631ddb84e86e47ac5ce1b2c826a3d6b6d896112dcedf7a3cbae6631ab1863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3643925/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3643925/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23658731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Lin</contributor><creatorcontrib>Cai, Min</creatorcontrib><creatorcontrib>Dai, Hui</creatorcontrib><creatorcontrib>Qiu, Yongyong</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Ruyang</creatorcontrib><creatorcontrib>Chu, Minjie</creatorcontrib><creatorcontrib>Dai, Juncheng</creatorcontrib><creatorcontrib>Hu, Zhibin</creatorcontrib><creatorcontrib>Shen, Hongbing</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>SNP set association analysis for genome-wide association studies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and ≥ 2 causal SNPs model. Our simulation results show that all of these methods can control the type I error at the nominal significance level. SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer (NSCLC) in Han Chinese population.</description><subject>Alleles</subject><subject>Analysis</subject><subject>Asian Continental Ancestry Group</subject><subject>Association analysis</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Carcinoma, Non-Small-Cell Lung - ethnology</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Chromosomes</subject><subject>Computer Simulation</subject><subject>Control methods</subject><subject>Disease</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Eigen values</subject><subject>Eigenvalues</subject><subject>Epidemiology</subject><subject>Gene Frequency</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - statistics &amp; numerical data</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Linkage Disequilibrium</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Lung Neoplasms - ethnology</subject><subject>Lung Neoplasms - genetics</subject><subject>Mathematics</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Membrane Proteins - genetics</subject><subject>Models, Genetic</subject><subject>Neoplasm Proteins - genetics</subject><subject>Non-small cell lung cancer</subject><subject>Non-small cell lung carcinoma</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Power</subject><subject>Principal Component Analysis - methods</subject><subject>Principal components analysis</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Reproductive health</subject><subject>Research Design</subject><subject>Simulation</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Studies</subject><subject>X-ray Repair Cross Complementing Protein 1</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltv1DAQhSMEoqXwDxCshITgIYtvcZwXRFVxWamiiAKv1sSeZL3KxkucAP33ON202qA-ID_Ecr5zZsY-SfKUkiXlOX2z8UPXQrPc-RaXhEgmiuxeckwLzlLJCL9_sD9KHoWwISTjSsqHyRHjMlM5p8fJu8vPXxYB-wWE4I2D3vl2AdH3KriwqHy3qLH1W0x_O4szKPSDdRgeJw8qaAI-mb4nyfcP77-dfUrPLz6uzk7PUyML1qe2Konk1NpSCVQSRQ4mM0hLZhSTwK0spVWFpJRZg7bKgZsSUEYNlFRJfpI83_vuGh_0NHzQlGeE5znJRSRWe8J62Ohd57bQXWkPTl8f-K7W0PXONKgNr6RiFYIoiDCUFapUeQWxEyK4ufZ6O1Ubyi3Gjtq-g2ZmOv_TurWu_S_NpeAFy6LBq8mg8z8HDL3eumCwaaBFP-z7phmjjEX0xT_o3dNNVA1xANdWPtY1o6k-FbkSPL7zWHZ5BxWXxa0zMSmVi-czweuZIDI9_ulrGELQq8uv_89e_JizLw_YNULTr4NvhjE6YQ6KPWg6H0KH1e0lU6LHoN_chh6DrqegR9mzwwe6Fd0km_8Flr_33Q</recordid><startdate>20130503</startdate><enddate>20130503</enddate><creator>Cai, Min</creator><creator>Dai, Hui</creator><creator>Qiu, Yongyong</creator><creator>Zhao, Yang</creator><creator>Zhang, Ruyang</creator><creator>Chu, Minjie</creator><creator>Dai, Juncheng</creator><creator>Hu, Zhibin</creator><creator>Shen, Hongbing</creator><creator>Chen, Feng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130503</creationdate><title>SNP set association analysis for genome-wide association studies</title><author>Cai, Min ; Dai, Hui ; Qiu, Yongyong ; Zhao, Yang ; Zhang, Ruyang ; Chu, Minjie ; Dai, Juncheng ; Hu, Zhibin ; Shen, Hongbing ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dfb0631ddb84e86e47ac5ce1b2c826a3d6b6d896112dcedf7a3cbae6631ab1863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alleles</topic><topic>Analysis</topic><topic>Asian Continental Ancestry Group</topic><topic>Association analysis</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Carcinoma, Non-Small-Cell Lung - ethnology</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Chromosomes</topic><topic>Computer Simulation</topic><topic>Control methods</topic><topic>Disease</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Eigen values</topic><topic>Eigenvalues</topic><topic>Epidemiology</topic><topic>Gene Frequency</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - statistics &amp; numerical data</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Linkage Disequilibrium</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Lung Neoplasms - ethnology</topic><topic>Lung Neoplasms - genetics</topic><topic>Mathematics</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Membrane Proteins - genetics</topic><topic>Models, Genetic</topic><topic>Neoplasm Proteins - genetics</topic><topic>Non-small cell lung cancer</topic><topic>Non-small cell lung carcinoma</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Power</topic><topic>Principal Component Analysis - methods</topic><topic>Principal components analysis</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Reproductive health</topic><topic>Research Design</topic><topic>Simulation</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Studies</topic><topic>X-ray Repair Cross Complementing Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Min</creatorcontrib><creatorcontrib>Dai, Hui</creatorcontrib><creatorcontrib>Qiu, Yongyong</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Ruyang</creatorcontrib><creatorcontrib>Chu, Minjie</creatorcontrib><creatorcontrib>Dai, Juncheng</creatorcontrib><creatorcontrib>Hu, Zhibin</creatorcontrib><creatorcontrib>Shen, Hongbing</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Min</au><au>Dai, Hui</au><au>Qiu, Yongyong</au><au>Zhao, Yang</au><au>Zhang, Ruyang</au><au>Chu, Minjie</au><au>Dai, Juncheng</au><au>Hu, Zhibin</au><au>Shen, Hongbing</au><au>Chen, Feng</au><au>Chen, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNP set association analysis for genome-wide association studies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-05-03</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>e62495</spage><epage>e62495</epage><pages>e62495-e62495</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and ≥ 2 causal SNPs model. Our simulation results show that all of these methods can control the type I error at the nominal significance level. SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer (NSCLC) in Han Chinese population.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23658731</pmid><doi>10.1371/journal.pone.0062495</doi><tpages>e62495</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-05, Vol.8 (5), p.e62495-e62495
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1350377074
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alleles
Analysis
Asian Continental Ancestry Group
Association analysis
Biology
Biomarkers
Carcinoma, Non-Small-Cell Lung - ethnology
Carcinoma, Non-Small-Cell Lung - genetics
Chromosomes
Computer Simulation
Control methods
Disease
DNA-Binding Proteins - genetics
Eigen values
Eigenvalues
Epidemiology
Gene Frequency
Genes
Genetic aspects
Genetic diversity
Genetic variance
Genome-wide association studies
Genome-Wide Association Study - statistics & numerical data
Genomes
Genomics
Humans
Laboratories
Linkage Disequilibrium
Lung cancer
Lung diseases
Lung Neoplasms - ethnology
Lung Neoplasms - genetics
Mathematics
Medical prognosis
Medical research
Medicine
Membrane Proteins - genetics
Models, Genetic
Neoplasm Proteins - genetics
Non-small cell lung cancer
Non-small cell lung carcinoma
Polymorphism, Single Nucleotide
Power
Principal Component Analysis - methods
Principal components analysis
Public health
Regression analysis
Reproductive health
Research Design
Simulation
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Software
Studies
X-ray Repair Cross Complementing Protein 1
title SNP set association analysis for genome-wide association studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNP%20set%20association%20analysis%20for%20genome-wide%20association%20studies&rft.jtitle=PloS%20one&rft.au=Cai,%20Min&rft.date=2013-05-03&rft.volume=8&rft.issue=5&rft.spage=e62495&rft.epage=e62495&rft.pages=e62495-e62495&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062495&rft_dat=%3Cgale_plos_%3EA478436205%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350377074&rft_id=info:pmid/23658731&rft_galeid=A478436205&rft_doaj_id=oai_doaj_org_article_c3f682fea4904c1298b87fa826043c74&rfr_iscdi=true