Novel algorithm for non-invasive assessment of fibrosis in NAFLD

Various conditions of liver disease and the downsides of liver biopsy call for a non-invasive option to assess liver fibrosis. A non-invasive score would be especially useful to identify patients with slow advancing fibrotic processes, as in Non-Alcoholic Fatty Liver Disease (NAFLD), which should un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-04, Vol.8 (4), p.e62439-e62439
Hauptverfasser: Sowa, Jan-Peter, Heider, Dominik, Bechmann, Lars Peter, Gerken, Guido, Hoffmann, Daniel, Canbay, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e62439
container_issue 4
container_start_page e62439
container_title PloS one
container_volume 8
creator Sowa, Jan-Peter
Heider, Dominik
Bechmann, Lars Peter
Gerken, Guido
Hoffmann, Daniel
Canbay, Ali
description Various conditions of liver disease and the downsides of liver biopsy call for a non-invasive option to assess liver fibrosis. A non-invasive score would be especially useful to identify patients with slow advancing fibrotic processes, as in Non-Alcoholic Fatty Liver Disease (NAFLD), which should undergo histological examination for fibrosis. Classic liver serum parameters, hyaluronic acid (HA) and cell death markers of 126 patients undergoing bariatric surgery for morbid obesity were analyzed by machine learning techniques (logistic regression, k-nearest neighbors, linear support vector machines, rule-based systems, decision trees and random forest (RF)). Specificity, sensitivity and accuracy of the evaluated datasets to predict fibrosis were assessed. None of the single parameters (ALT, AST, M30, M60, HA) did differ significantly between patients with a fibrosis score 1 or 2. However, combining these parameters using RFs reached 79% accuracy in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RFs identified the cell death markers M30 and M65 as more important for the decision than the classic liver parameters. On the basis of serum parameters the generation of a fibrosis scoring system seems feasible, even when only marginally fibrotic tissue is available. Prospective evaluation of novel markers, i.e. cell death parameters, should be performed to identify an optimal set of fibrosis predictors.
doi_str_mv 10.1371/journal.pone.0062439
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1348122796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eeaf9610c91c44919ceae67e4e1f43fc</doaj_id><sourcerecordid>2959906201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-893166d65ff8e2ac09173010635f71dde882fbae038f79c99ebe56cb869318b33</originalsourceid><addsrcrecordid>eNptUsFu1DAQtRAVLYU_QBCJSy9ZPHHi2BdE1VKotCoXOFuOM9565diLnV2pf98sm1Yt6skj-7038zyPkA9AF8Ba-LKO2xS0X2xiwAWlvKqZfEVOQLKq5BVlr5_Ux-RtzmtKGyY4f0OOK8aZoKI5Id9u4g59of0qJjfeDoWNqQgxlC7sdHY7LHTOmPOAYSyiLazrUswuFy4UN-dXy8t35Mhqn_H9fJ6SP1fff1_8LJe_flxfnC9L01R8LIVkwHnPG2sFVtpQCS2jQDlrbAt9j0JUttNImbCtNFJihw03neATUXSMnZJPB92Nj1nN5rMCVguoqlbyCXF9QPRRr9UmuUGnOxW1U_8uYlopnUZnPCpEbSUHaiSYupYgDWrkLdYItmbWTFpf527bbsDeTO6T9s9En78Ed6tWcacYr_e7mATOZoEU_24xj2pw2aD3OmDcHuZuKICACfr5P-jL7uoDykz_nxPax2GAqn0gHlhqHwg1B2KifXxq5JH0kAB2D8A7s1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348122796</pqid></control><display><type>article</type><title>Novel algorithm for non-invasive assessment of fibrosis in NAFLD</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sowa, Jan-Peter ; Heider, Dominik ; Bechmann, Lars Peter ; Gerken, Guido ; Hoffmann, Daniel ; Canbay, Ali</creator><contributor>Syn, Wing-Kin</contributor><creatorcontrib>Sowa, Jan-Peter ; Heider, Dominik ; Bechmann, Lars Peter ; Gerken, Guido ; Hoffmann, Daniel ; Canbay, Ali ; Syn, Wing-Kin</creatorcontrib><description>Various conditions of liver disease and the downsides of liver biopsy call for a non-invasive option to assess liver fibrosis. A non-invasive score would be especially useful to identify patients with slow advancing fibrotic processes, as in Non-Alcoholic Fatty Liver Disease (NAFLD), which should undergo histological examination for fibrosis. Classic liver serum parameters, hyaluronic acid (HA) and cell death markers of 126 patients undergoing bariatric surgery for morbid obesity were analyzed by machine learning techniques (logistic regression, k-nearest neighbors, linear support vector machines, rule-based systems, decision trees and random forest (RF)). Specificity, sensitivity and accuracy of the evaluated datasets to predict fibrosis were assessed. None of the single parameters (ALT, AST, M30, M60, HA) did differ significantly between patients with a fibrosis score 1 or 2. However, combining these parameters using RFs reached 79% accuracy in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RFs identified the cell death markers M30 and M65 as more important for the decision than the classic liver parameters. On the basis of serum parameters the generation of a fibrosis scoring system seems feasible, even when only marginally fibrotic tissue is available. Prospective evaluation of novel markers, i.e. cell death parameters, should be performed to identify an optimal set of fibrosis predictors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062439</identifier><identifier>PMID: 23638085</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Apoptosis ; Artificial Intelligence ; Bioinformatics ; Biology ; Biomarkers ; Biopsy ; Cell death ; Decision Trees ; Fatty liver ; Fatty Liver - blood ; Fatty Liver - complications ; Fatty Liver - pathology ; Feasibility studies ; Female ; Fibrosis ; Gastroenterology ; Gastrointestinal surgery ; Hepatology ; Hospitals ; Humans ; Hyaluronic acid ; Learning algorithms ; Liver ; Liver - pathology ; Liver cirrhosis ; Liver Cirrhosis - blood ; Liver Cirrhosis - complications ; Liver Cirrhosis - diagnosis ; Liver Cirrhosis - pathology ; Liver diseases ; Machine learning ; Male ; Markers ; Medicine ; Middle Aged ; Mortality ; Non-alcoholic Fatty Liver Disease ; Parameter identification ; Parameter sensitivity ; Patients ; Prognosis ; Regression analysis ; Sensitivity ; Sensitivity analysis ; Support vector machines ; Surgery</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e62439-e62439</ispartof><rights>2013 Sowa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Sowa et al 2013 Sowa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-893166d65ff8e2ac09173010635f71dde882fbae038f79c99ebe56cb869318b33</citedby><cites>FETCH-LOGICAL-c526t-893166d65ff8e2ac09173010635f71dde882fbae038f79c99ebe56cb869318b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640062/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640062/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23638085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Syn, Wing-Kin</contributor><creatorcontrib>Sowa, Jan-Peter</creatorcontrib><creatorcontrib>Heider, Dominik</creatorcontrib><creatorcontrib>Bechmann, Lars Peter</creatorcontrib><creatorcontrib>Gerken, Guido</creatorcontrib><creatorcontrib>Hoffmann, Daniel</creatorcontrib><creatorcontrib>Canbay, Ali</creatorcontrib><title>Novel algorithm for non-invasive assessment of fibrosis in NAFLD</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Various conditions of liver disease and the downsides of liver biopsy call for a non-invasive option to assess liver fibrosis. A non-invasive score would be especially useful to identify patients with slow advancing fibrotic processes, as in Non-Alcoholic Fatty Liver Disease (NAFLD), which should undergo histological examination for fibrosis. Classic liver serum parameters, hyaluronic acid (HA) and cell death markers of 126 patients undergoing bariatric surgery for morbid obesity were analyzed by machine learning techniques (logistic regression, k-nearest neighbors, linear support vector machines, rule-based systems, decision trees and random forest (RF)). Specificity, sensitivity and accuracy of the evaluated datasets to predict fibrosis were assessed. None of the single parameters (ALT, AST, M30, M60, HA) did differ significantly between patients with a fibrosis score 1 or 2. However, combining these parameters using RFs reached 79% accuracy in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RFs identified the cell death markers M30 and M65 as more important for the decision than the classic liver parameters. On the basis of serum parameters the generation of a fibrosis scoring system seems feasible, even when only marginally fibrotic tissue is available. Prospective evaluation of novel markers, i.e. cell death parameters, should be performed to identify an optimal set of fibrosis predictors.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Apoptosis</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Cell death</subject><subject>Decision Trees</subject><subject>Fatty liver</subject><subject>Fatty Liver - blood</subject><subject>Fatty Liver - complications</subject><subject>Fatty Liver - pathology</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Gastroenterology</subject><subject>Gastrointestinal surgery</subject><subject>Hepatology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hyaluronic acid</subject><subject>Learning algorithms</subject><subject>Liver</subject><subject>Liver - pathology</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - blood</subject><subject>Liver Cirrhosis - complications</subject><subject>Liver Cirrhosis - diagnosis</subject><subject>Liver Cirrhosis - pathology</subject><subject>Liver diseases</subject><subject>Machine learning</subject><subject>Male</subject><subject>Markers</subject><subject>Medicine</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Non-alcoholic Fatty Liver Disease</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Regression analysis</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Support vector machines</subject><subject>Surgery</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQtRAVLYU_QBCJSy9ZPHHi2BdE1VKotCoXOFuOM9565diLnV2pf98sm1Yt6skj-7038zyPkA9AF8Ba-LKO2xS0X2xiwAWlvKqZfEVOQLKq5BVlr5_Ux-RtzmtKGyY4f0OOK8aZoKI5Id9u4g59of0qJjfeDoWNqQgxlC7sdHY7LHTOmPOAYSyiLazrUswuFy4UN-dXy8t35Mhqn_H9fJ6SP1fff1_8LJe_flxfnC9L01R8LIVkwHnPG2sFVtpQCS2jQDlrbAt9j0JUttNImbCtNFJihw03neATUXSMnZJPB92Nj1nN5rMCVguoqlbyCXF9QPRRr9UmuUGnOxW1U_8uYlopnUZnPCpEbSUHaiSYupYgDWrkLdYItmbWTFpf527bbsDeTO6T9s9En78Ed6tWcacYr_e7mATOZoEU_24xj2pw2aD3OmDcHuZuKICACfr5P-jL7uoDykz_nxPax2GAqn0gHlhqHwg1B2KifXxq5JH0kAB2D8A7s1I</recordid><startdate>20130430</startdate><enddate>20130430</enddate><creator>Sowa, Jan-Peter</creator><creator>Heider, Dominik</creator><creator>Bechmann, Lars Peter</creator><creator>Gerken, Guido</creator><creator>Hoffmann, Daniel</creator><creator>Canbay, Ali</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130430</creationdate><title>Novel algorithm for non-invasive assessment of fibrosis in NAFLD</title><author>Sowa, Jan-Peter ; Heider, Dominik ; Bechmann, Lars Peter ; Gerken, Guido ; Hoffmann, Daniel ; Canbay, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-893166d65ff8e2ac09173010635f71dde882fbae038f79c99ebe56cb869318b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Apoptosis</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Cell death</topic><topic>Decision Trees</topic><topic>Fatty liver</topic><topic>Fatty Liver - blood</topic><topic>Fatty Liver - complications</topic><topic>Fatty Liver - pathology</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Gastroenterology</topic><topic>Gastrointestinal surgery</topic><topic>Hepatology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hyaluronic acid</topic><topic>Learning algorithms</topic><topic>Liver</topic><topic>Liver - pathology</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - blood</topic><topic>Liver Cirrhosis - complications</topic><topic>Liver Cirrhosis - diagnosis</topic><topic>Liver Cirrhosis - pathology</topic><topic>Liver diseases</topic><topic>Machine learning</topic><topic>Male</topic><topic>Markers</topic><topic>Medicine</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Non-alcoholic Fatty Liver Disease</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Regression analysis</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Support vector machines</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowa, Jan-Peter</creatorcontrib><creatorcontrib>Heider, Dominik</creatorcontrib><creatorcontrib>Bechmann, Lars Peter</creatorcontrib><creatorcontrib>Gerken, Guido</creatorcontrib><creatorcontrib>Hoffmann, Daniel</creatorcontrib><creatorcontrib>Canbay, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowa, Jan-Peter</au><au>Heider, Dominik</au><au>Bechmann, Lars Peter</au><au>Gerken, Guido</au><au>Hoffmann, Daniel</au><au>Canbay, Ali</au><au>Syn, Wing-Kin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel algorithm for non-invasive assessment of fibrosis in NAFLD</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-30</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e62439</spage><epage>e62439</epage><pages>e62439-e62439</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Various conditions of liver disease and the downsides of liver biopsy call for a non-invasive option to assess liver fibrosis. A non-invasive score would be especially useful to identify patients with slow advancing fibrotic processes, as in Non-Alcoholic Fatty Liver Disease (NAFLD), which should undergo histological examination for fibrosis. Classic liver serum parameters, hyaluronic acid (HA) and cell death markers of 126 patients undergoing bariatric surgery for morbid obesity were analyzed by machine learning techniques (logistic regression, k-nearest neighbors, linear support vector machines, rule-based systems, decision trees and random forest (RF)). Specificity, sensitivity and accuracy of the evaluated datasets to predict fibrosis were assessed. None of the single parameters (ALT, AST, M30, M60, HA) did differ significantly between patients with a fibrosis score 1 or 2. However, combining these parameters using RFs reached 79% accuracy in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RFs identified the cell death markers M30 and M65 as more important for the decision than the classic liver parameters. On the basis of serum parameters the generation of a fibrosis scoring system seems feasible, even when only marginally fibrotic tissue is available. Prospective evaluation of novel markers, i.e. cell death parameters, should be performed to identify an optimal set of fibrosis predictors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23638085</pmid><doi>10.1371/journal.pone.0062439</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-04, Vol.8 (4), p.e62439-e62439
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1348122796
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Algorithms
Apoptosis
Artificial Intelligence
Bioinformatics
Biology
Biomarkers
Biopsy
Cell death
Decision Trees
Fatty liver
Fatty Liver - blood
Fatty Liver - complications
Fatty Liver - pathology
Feasibility studies
Female
Fibrosis
Gastroenterology
Gastrointestinal surgery
Hepatology
Hospitals
Humans
Hyaluronic acid
Learning algorithms
Liver
Liver - pathology
Liver cirrhosis
Liver Cirrhosis - blood
Liver Cirrhosis - complications
Liver Cirrhosis - diagnosis
Liver Cirrhosis - pathology
Liver diseases
Machine learning
Male
Markers
Medicine
Middle Aged
Mortality
Non-alcoholic Fatty Liver Disease
Parameter identification
Parameter sensitivity
Patients
Prognosis
Regression analysis
Sensitivity
Sensitivity analysis
Support vector machines
Surgery
title Novel algorithm for non-invasive assessment of fibrosis in NAFLD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20algorithm%20for%20non-invasive%20assessment%20of%20fibrosis%20in%20NAFLD&rft.jtitle=PloS%20one&rft.au=Sowa,%20Jan-Peter&rft.date=2013-04-30&rft.volume=8&rft.issue=4&rft.spage=e62439&rft.epage=e62439&rft.pages=e62439-e62439&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062439&rft_dat=%3Cproquest_plos_%3E2959906201%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348122796&rft_id=info:pmid/23638085&rft_doaj_id=oai_doaj_org_article_eeaf9610c91c44919ceae67e4e1f43fc&rfr_iscdi=true