HIV model parameter estimates from interruption trial data including drug efficacy and reservoir dynamics
Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable fr...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-07, Vol.7 (7), p.e40198-e40198 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e40198 |
---|---|
container_issue | 7 |
container_start_page | e40198 |
container_title | PloS one |
container_volume | 7 |
creator | Luo, Rutao Piovoso, Michael J Martinez-Picado, Javier Zurakowski, Ryan |
description | Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3-5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. |
doi_str_mv | 10.1371/journal.pone.0040198 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1348115040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477077396</galeid><doaj_id>oai_doaj_org_article_42343ccce78f48ddb47f52ded5b531fb</doaj_id><sourcerecordid>A477077396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dab81872d7eb8bf0ab5150b9ed22f1ce948e9ce378922331484346ee10cd43613</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padK0_6C0hkJpD7vVly35UgihbRYCgX7kKmRp7NViWxtJDt1_X23XCeuSQ9FBYvTMO5oZTZa9xmiJKcefNm70g-qWWzfAEiGGcCWeZKe4omRREkSfHp1PshchbBAqqCjL59kJIQIXnPDTzF6ubvLeGejyrfKqhwg-hxBtryKEvPGuz-2QjH7cRuuGPHqrutyoqJJdd6OxQ5sbP7Y5NI3VSu9yNZjcQwB_56zPzW5QvdXhZfasUV2AV9N-lv36-uXnxeXi6vrb6uL8aqHLisSFUbXAghPDoRZ1g1Rd4ALVFRhCGqyhYgIqDZSLihBKMROMshIAI20YLTE9y94edLedC3KqUpCYMoGTEkOJWB0I49RGbn3K1e-kU1b-NTjfSuWj1R1IRiijWmvgomHCmJrxpiAGTFEXFDd10vo8RRvrHoyGIXrVzUTnN4Ndy9bdSUorXokqCXyYBLy7HVPlZW-Dhq5TA7gxvRsRntpdsj367h_08ewmqlUpATs0LsXVe1F5zjhHnNOqTNTyESotA6lZ6Us1NtlnDh9nDomJ8Du2agxBrn58_3_2-mbOvj9i16C6uA6uG_efLcxBdgC1dyF4aB6KjJHcT8R9NeR-IuQ0EcntzXGDHpzuR4D-AQxHB3o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348115040</pqid></control><display><type>article</type><title>HIV model parameter estimates from interruption trial data including drug efficacy and reservoir dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Luo, Rutao ; Piovoso, Michael J ; Martinez-Picado, Javier ; Zurakowski, Ryan</creator><contributor>Sandstrom, Paul</contributor><creatorcontrib>Luo, Rutao ; Piovoso, Michael J ; Martinez-Picado, Javier ; Zurakowski, Ryan ; Sandstrom, Paul</creatorcontrib><description>Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3-5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0040198</identifier><identifier>PMID: 22815727</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Analysis ; Anti-HIV Agents - pharmacology ; Anti-HIV Agents - therapeutic use ; Antiretroviral drugs ; Antiretroviral Therapy, Highly Active ; Bayes Theorem ; Biology ; Biomedical engineering ; Care and treatment ; CD4-Positive T-Lymphocytes - drug effects ; Cell death ; Computer engineering ; Computer simulation ; Decay ; Differential equations ; Drug efficacy ; Drug therapy ; Engineering ; Estimates ; Hepatitis ; Highly active antiretroviral therapy ; HIV ; HIV Infections - drug therapy ; HIV Infections - immunology ; HIV-1 - drug effects ; HIV-1 - physiology ; Human immunodeficiency virus ; Humans ; Identification ; Infections ; Interruption ; Least-Squares Analysis ; Lymphocytes ; Markov chains ; Mathematical models ; Mathematics ; Medical research ; Medical treatment ; Medicine ; Models, Statistical ; Monte Carlo method ; Monte Carlo methods ; Monte Carlo simulation ; Nonlinear Dynamics ; Ordinary differential equations ; Parameter estimation ; Parameter identification ; Patient compliance ; Patients ; Process controls ; Randomized Controlled Trials as Topic ; Studies ; Time Factors ; Viral Load - drug effects ; Withholding Treatment</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e40198-e40198</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Luo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Luo et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dab81872d7eb8bf0ab5150b9ed22f1ce948e9ce378922331484346ee10cd43613</citedby><cites>FETCH-LOGICAL-c692t-dab81872d7eb8bf0ab5150b9ed22f1ce948e9ce378922331484346ee10cd43613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397989/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397989/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22815727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sandstrom, Paul</contributor><creatorcontrib>Luo, Rutao</creatorcontrib><creatorcontrib>Piovoso, Michael J</creatorcontrib><creatorcontrib>Martinez-Picado, Javier</creatorcontrib><creatorcontrib>Zurakowski, Ryan</creatorcontrib><title>HIV model parameter estimates from interruption trial data including drug efficacy and reservoir dynamics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3-5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients.</description><subject>Adult</subject><subject>Analysis</subject><subject>Anti-HIV Agents - pharmacology</subject><subject>Anti-HIV Agents - therapeutic use</subject><subject>Antiretroviral drugs</subject><subject>Antiretroviral Therapy, Highly Active</subject><subject>Bayes Theorem</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Care and treatment</subject><subject>CD4-Positive T-Lymphocytes - drug effects</subject><subject>Cell death</subject><subject>Computer engineering</subject><subject>Computer simulation</subject><subject>Decay</subject><subject>Differential equations</subject><subject>Drug efficacy</subject><subject>Drug therapy</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Hepatitis</subject><subject>Highly active antiretroviral therapy</subject><subject>HIV</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - immunology</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - physiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Identification</subject><subject>Infections</subject><subject>Interruption</subject><subject>Least-Squares Analysis</subject><subject>Lymphocytes</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medical research</subject><subject>Medical treatment</subject><subject>Medicine</subject><subject>Models, Statistical</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear Dynamics</subject><subject>Ordinary differential equations</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Patient compliance</subject><subject>Patients</subject><subject>Process controls</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Studies</subject><subject>Time Factors</subject><subject>Viral Load - drug effects</subject><subject>Withholding Treatment</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padK0_6C0hkJpD7vVly35UgihbRYCgX7kKmRp7NViWxtJDt1_X23XCeuSQ9FBYvTMO5oZTZa9xmiJKcefNm70g-qWWzfAEiGGcCWeZKe4omRREkSfHp1PshchbBAqqCjL59kJIQIXnPDTzF6ubvLeGejyrfKqhwg-hxBtryKEvPGuz-2QjH7cRuuGPHqrutyoqJJdd6OxQ5sbP7Y5NI3VSu9yNZjcQwB_56zPzW5QvdXhZfasUV2AV9N-lv36-uXnxeXi6vrb6uL8aqHLisSFUbXAghPDoRZ1g1Rd4ALVFRhCGqyhYgIqDZSLihBKMROMshIAI20YLTE9y94edLedC3KqUpCYMoGTEkOJWB0I49RGbn3K1e-kU1b-NTjfSuWj1R1IRiijWmvgomHCmJrxpiAGTFEXFDd10vo8RRvrHoyGIXrVzUTnN4Ndy9bdSUorXokqCXyYBLy7HVPlZW-Dhq5TA7gxvRsRntpdsj367h_08ewmqlUpATs0LsXVe1F5zjhHnNOqTNTyESotA6lZ6Us1NtlnDh9nDomJ8Du2agxBrn58_3_2-mbOvj9i16C6uA6uG_efLcxBdgC1dyF4aB6KjJHcT8R9NeR-IuQ0EcntzXGDHpzuR4D-AQxHB3o</recordid><startdate>20120716</startdate><enddate>20120716</enddate><creator>Luo, Rutao</creator><creator>Piovoso, Michael J</creator><creator>Martinez-Picado, Javier</creator><creator>Zurakowski, Ryan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120716</creationdate><title>HIV model parameter estimates from interruption trial data including drug efficacy and reservoir dynamics</title><author>Luo, Rutao ; Piovoso, Michael J ; Martinez-Picado, Javier ; Zurakowski, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dab81872d7eb8bf0ab5150b9ed22f1ce948e9ce378922331484346ee10cd43613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Analysis</topic><topic>Anti-HIV Agents - pharmacology</topic><topic>Anti-HIV Agents - therapeutic use</topic><topic>Antiretroviral drugs</topic><topic>Antiretroviral Therapy, Highly Active</topic><topic>Bayes Theorem</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Care and treatment</topic><topic>CD4-Positive T-Lymphocytes - drug effects</topic><topic>Cell death</topic><topic>Computer engineering</topic><topic>Computer simulation</topic><topic>Decay</topic><topic>Differential equations</topic><topic>Drug efficacy</topic><topic>Drug therapy</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Hepatitis</topic><topic>Highly active antiretroviral therapy</topic><topic>HIV</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - immunology</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - physiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Identification</topic><topic>Infections</topic><topic>Interruption</topic><topic>Least-Squares Analysis</topic><topic>Lymphocytes</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medical research</topic><topic>Medical treatment</topic><topic>Medicine</topic><topic>Models, Statistical</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear Dynamics</topic><topic>Ordinary differential equations</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Patient compliance</topic><topic>Patients</topic><topic>Process controls</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Studies</topic><topic>Time Factors</topic><topic>Viral Load - drug effects</topic><topic>Withholding Treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Rutao</creatorcontrib><creatorcontrib>Piovoso, Michael J</creatorcontrib><creatorcontrib>Martinez-Picado, Javier</creatorcontrib><creatorcontrib>Zurakowski, Ryan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Rutao</au><au>Piovoso, Michael J</au><au>Martinez-Picado, Javier</au><au>Zurakowski, Ryan</au><au>Sandstrom, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIV model parameter estimates from interruption trial data including drug efficacy and reservoir dynamics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-16</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e40198</spage><epage>e40198</epage><pages>e40198-e40198</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3-5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22815727</pmid><doi>10.1371/journal.pone.0040198</doi><tpages>e40198</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-07, Vol.7 (7), p.e40198-e40198 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1348115040 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Analysis Anti-HIV Agents - pharmacology Anti-HIV Agents - therapeutic use Antiretroviral drugs Antiretroviral Therapy, Highly Active Bayes Theorem Biology Biomedical engineering Care and treatment CD4-Positive T-Lymphocytes - drug effects Cell death Computer engineering Computer simulation Decay Differential equations Drug efficacy Drug therapy Engineering Estimates Hepatitis Highly active antiretroviral therapy HIV HIV Infections - drug therapy HIV Infections - immunology HIV-1 - drug effects HIV-1 - physiology Human immunodeficiency virus Humans Identification Infections Interruption Least-Squares Analysis Lymphocytes Markov chains Mathematical models Mathematics Medical research Medical treatment Medicine Models, Statistical Monte Carlo method Monte Carlo methods Monte Carlo simulation Nonlinear Dynamics Ordinary differential equations Parameter estimation Parameter identification Patient compliance Patients Process controls Randomized Controlled Trials as Topic Studies Time Factors Viral Load - drug effects Withholding Treatment |
title | HIV model parameter estimates from interruption trial data including drug efficacy and reservoir dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIV%20model%20parameter%20estimates%20from%20interruption%20trial%20data%20including%20drug%20efficacy%20and%20reservoir%20dynamics&rft.jtitle=PloS%20one&rft.au=Luo,%20Rutao&rft.date=2012-07-16&rft.volume=7&rft.issue=7&rft.spage=e40198&rft.epage=e40198&rft.pages=e40198-e40198&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0040198&rft_dat=%3Cgale_plos_%3EA477077396%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348115040&rft_id=info:pmid/22815727&rft_galeid=A477077396&rft_doaj_id=oai_doaj_org_article_42343ccce78f48ddb47f52ded5b531fb&rfr_iscdi=true |