Altered reward circuitry in the norepinephrine transporter knockout mouse
Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of sign...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-03, Vol.8 (3), p.e57597-e57597 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e57597 |
---|---|
container_issue | 3 |
container_start_page | e57597 |
container_title | PloS one |
container_volume | 8 |
creator | Gallagher, Joseph J Zhang, Xiaowei Hall, F Scott Uhl, George R Bearer, Elaine L Jacobs, Russell E |
description | Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn(2+) tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of more robust connectivity in the frontal portion of the reward circuit of the DAT and NET knockout mice compared to the SERT knockout mice. |
doi_str_mv | 10.1371/journal.pone.0057597 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1346597151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478428621</galeid><doaj_id>oai_doaj_org_article_e3addf501e644d828fb521464e7237c0</doaj_id><sourcerecordid>A478428621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c717t-a69fe6ad9c2563a26d42ffa88530d7bd28a0ea6d9ed10e616ecc5f19c4e2876a3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq0t4Iw-LHwMKCX7chk5zOZLaTdJNU3X9vxukuU9kLKaQhed43OW9OUTzHaI6pwO-2fghOdfPeO5gjVImqEQ-KU9xQMuME0YdH85PiSYzbDNGa88fFCaGMNwQ1p8Vy0SUIYMoAv1QwpbZBDzaFm9K6Mm2gdD5Abx30m5DHMgXlYu9DFpVXzusrP6Ry54cIT4tHreoiPBv_Z8X3jx--nX-eXVx-Wp4vLmZaYJFmijctcGUaTSpOFeGGkbZVdV1RZMTKkFohUNw0YDACjjloXbW40QxILbiiZ8XLg2_f-SjHFKLEuaScAK5wJpYHwni1lX2wOxVupFdW_l3wYS1VSFZ3IIEqY9oKYeCMmZrU7aoimHEGglChUfZ6P542rHZgNLicQDcxne44u5Fr_1PSKt-W0WzwZjQI_nqAmOTORg1dpxzk2PK9cc4hv6jI6Kt_0PurG6m1ygVY1_p8rt6bygUTNSM1J3tqfg-VPwM7q3PLtDavTwRvJ4LMJPid1mqIUS6_fvl_9vLHlH19xG5AdWkTfTck612cguwA6uBjDNDehYyR3Hf8bRpy3_Fy7Pgse3H8QHei2xanfwDvyvwd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346597151</pqid></control><display><type>article</type><title>Altered reward circuitry in the norepinephrine transporter knockout mouse</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gallagher, Joseph J ; Zhang, Xiaowei ; Hall, F Scott ; Uhl, George R ; Bearer, Elaine L ; Jacobs, Russell E</creator><creatorcontrib>Gallagher, Joseph J ; Zhang, Xiaowei ; Hall, F Scott ; Uhl, George R ; Bearer, Elaine L ; Jacobs, Russell E</creatorcontrib><description>Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn(2+) tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of more robust connectivity in the frontal portion of the reward circuit of the DAT and NET knockout mice compared to the SERT knockout mice.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0057597</identifier><identifier>PMID: 23469209</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Addictions ; Animals ; Antidepressants ; Anxiety ; Aspartic Acid - analogs & derivatives ; Aspartic Acid - metabolism ; Attention deficit hyperactivity disorder ; Biological transport ; Biology ; Brain ; Brain - metabolism ; Brain - pathology ; Brain - physiopathology ; Brain Mapping ; Brain research ; Catecholamines ; Circuits ; Cocaine ; Contrast Media - administration & dosage ; Correlation analysis ; Cortex ; Dopamine ; Dopamine Plasma Membrane Transport Proteins - deficiency ; Dopamine Plasma Membrane Transport Proteins - genetics ; Dopamine transporter ; Drug abuse ; Female ; Imaging techniques ; In vivo methods and tests ; Injections, Intraventricular ; Magnetic resonance ; Magnetic Resonance Imaging ; Male ; Manganese ; Manganese - administration & dosage ; Medical imaging ; Mental depression ; Mental disorders ; Metabolism ; Metabolites ; Mice ; Mice, Knockout ; Monoamine transporter ; Monoamines ; Morphometry ; Neostriatum ; Neural circuitry ; Neural networks ; Neurobiology ; Neuroimaging ; Neurological diseases ; Neurons - physiology ; Neurosciences ; Neurotransmitters ; Norepinephrine ; Norepinephrine Plasma Membrane Transport Proteins - deficiency ; Norepinephrine Plasma Membrane Transport Proteins - genetics ; Norepinephrine transporter ; Observations ; Psychological aspects ; Reinforcement ; Reward ; Rodents ; Serotonin ; Serotonin Plasma Membrane Transport Proteins - deficiency ; Serotonin Plasma Membrane Transport Proteins - genetics ; Serotonin transporter ; Signaling ; Spectrum analysis ; Stereotaxic Techniques ; Synaptic cleft ; Synaptic Transmission - physiology ; Transmitters</subject><ispartof>PloS one, 2013-03, Vol.8 (3), p.e57597-e57597</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c717t-a69fe6ad9c2563a26d42ffa88530d7bd28a0ea6d9ed10e616ecc5f19c4e2876a3</citedby><cites>FETCH-LOGICAL-c717t-a69fe6ad9c2563a26d42ffa88530d7bd28a0ea6d9ed10e616ecc5f19c4e2876a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587643/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587643/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23469209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallagher, Joseph J</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Hall, F Scott</creatorcontrib><creatorcontrib>Uhl, George R</creatorcontrib><creatorcontrib>Bearer, Elaine L</creatorcontrib><creatorcontrib>Jacobs, Russell E</creatorcontrib><title>Altered reward circuitry in the norepinephrine transporter knockout mouse</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn(2+) tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of more robust connectivity in the frontal portion of the reward circuit of the DAT and NET knockout mice compared to the SERT knockout mice.</description><subject>Addictions</subject><subject>Animals</subject><subject>Antidepressants</subject><subject>Anxiety</subject><subject>Aspartic Acid - analogs & derivatives</subject><subject>Aspartic Acid - metabolism</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Biological transport</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Catecholamines</subject><subject>Circuits</subject><subject>Cocaine</subject><subject>Contrast Media - administration & dosage</subject><subject>Correlation analysis</subject><subject>Cortex</subject><subject>Dopamine</subject><subject>Dopamine Plasma Membrane Transport Proteins - deficiency</subject><subject>Dopamine Plasma Membrane Transport Proteins - genetics</subject><subject>Dopamine transporter</subject><subject>Drug abuse</subject><subject>Female</subject><subject>Imaging techniques</subject><subject>In vivo methods and tests</subject><subject>Injections, Intraventricular</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Manganese</subject><subject>Manganese - administration & dosage</subject><subject>Medical imaging</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Monoamine transporter</subject><subject>Monoamines</subject><subject>Morphometry</subject><subject>Neostriatum</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Neurotransmitters</subject><subject>Norepinephrine</subject><subject>Norepinephrine Plasma Membrane Transport Proteins - deficiency</subject><subject>Norepinephrine Plasma Membrane Transport Proteins - genetics</subject><subject>Norepinephrine transporter</subject><subject>Observations</subject><subject>Psychological aspects</subject><subject>Reinforcement</subject><subject>Reward</subject><subject>Rodents</subject><subject>Serotonin</subject><subject>Serotonin Plasma Membrane Transport Proteins - deficiency</subject><subject>Serotonin Plasma Membrane Transport Proteins - genetics</subject><subject>Serotonin transporter</subject><subject>Signaling</subject><subject>Spectrum analysis</subject><subject>Stereotaxic Techniques</subject><subject>Synaptic cleft</subject><subject>Synaptic Transmission - physiology</subject><subject>Transmitters</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq0t4Iw-LHwMKCX7chk5zOZLaTdJNU3X9vxukuU9kLKaQhed43OW9OUTzHaI6pwO-2fghOdfPeO5gjVImqEQ-KU9xQMuME0YdH85PiSYzbDNGa88fFCaGMNwQ1p8Vy0SUIYMoAv1QwpbZBDzaFm9K6Mm2gdD5Abx30m5DHMgXlYu9DFpVXzusrP6Ry54cIT4tHreoiPBv_Z8X3jx--nX-eXVx-Wp4vLmZaYJFmijctcGUaTSpOFeGGkbZVdV1RZMTKkFohUNw0YDACjjloXbW40QxILbiiZ8XLg2_f-SjHFKLEuaScAK5wJpYHwni1lX2wOxVupFdW_l3wYS1VSFZ3IIEqY9oKYeCMmZrU7aoimHEGglChUfZ6P542rHZgNLicQDcxne44u5Fr_1PSKt-W0WzwZjQI_nqAmOTORg1dpxzk2PK9cc4hv6jI6Kt_0PurG6m1ygVY1_p8rt6bygUTNSM1J3tqfg-VPwM7q3PLtDavTwRvJ4LMJPid1mqIUS6_fvl_9vLHlH19xG5AdWkTfTck612cguwA6uBjDNDehYyR3Hf8bRpy3_Fy7Pgse3H8QHei2xanfwDvyvwd</recordid><startdate>20130304</startdate><enddate>20130304</enddate><creator>Gallagher, Joseph J</creator><creator>Zhang, Xiaowei</creator><creator>Hall, F Scott</creator><creator>Uhl, George R</creator><creator>Bearer, Elaine L</creator><creator>Jacobs, Russell E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130304</creationdate><title>Altered reward circuitry in the norepinephrine transporter knockout mouse</title><author>Gallagher, Joseph J ; Zhang, Xiaowei ; Hall, F Scott ; Uhl, George R ; Bearer, Elaine L ; Jacobs, Russell E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c717t-a69fe6ad9c2563a26d42ffa88530d7bd28a0ea6d9ed10e616ecc5f19c4e2876a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Addictions</topic><topic>Animals</topic><topic>Antidepressants</topic><topic>Anxiety</topic><topic>Aspartic Acid - analogs & derivatives</topic><topic>Aspartic Acid - metabolism</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Biological transport</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Catecholamines</topic><topic>Circuits</topic><topic>Cocaine</topic><topic>Contrast Media - administration & dosage</topic><topic>Correlation analysis</topic><topic>Cortex</topic><topic>Dopamine</topic><topic>Dopamine Plasma Membrane Transport Proteins - deficiency</topic><topic>Dopamine Plasma Membrane Transport Proteins - genetics</topic><topic>Dopamine transporter</topic><topic>Drug abuse</topic><topic>Female</topic><topic>Imaging techniques</topic><topic>In vivo methods and tests</topic><topic>Injections, Intraventricular</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Manganese</topic><topic>Manganese - administration & dosage</topic><topic>Medical imaging</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Monoamine transporter</topic><topic>Monoamines</topic><topic>Morphometry</topic><topic>Neostriatum</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Neurotransmitters</topic><topic>Norepinephrine</topic><topic>Norepinephrine Plasma Membrane Transport Proteins - deficiency</topic><topic>Norepinephrine Plasma Membrane Transport Proteins - genetics</topic><topic>Norepinephrine transporter</topic><topic>Observations</topic><topic>Psychological aspects</topic><topic>Reinforcement</topic><topic>Reward</topic><topic>Rodents</topic><topic>Serotonin</topic><topic>Serotonin Plasma Membrane Transport Proteins - deficiency</topic><topic>Serotonin Plasma Membrane Transport Proteins - genetics</topic><topic>Serotonin transporter</topic><topic>Signaling</topic><topic>Spectrum analysis</topic><topic>Stereotaxic Techniques</topic><topic>Synaptic cleft</topic><topic>Synaptic Transmission - physiology</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallagher, Joseph J</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Hall, F Scott</creatorcontrib><creatorcontrib>Uhl, George R</creatorcontrib><creatorcontrib>Bearer, Elaine L</creatorcontrib><creatorcontrib>Jacobs, Russell E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallagher, Joseph J</au><au>Zhang, Xiaowei</au><au>Hall, F Scott</au><au>Uhl, George R</au><au>Bearer, Elaine L</au><au>Jacobs, Russell E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered reward circuitry in the norepinephrine transporter knockout mouse</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-03-04</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><spage>e57597</spage><epage>e57597</epage><pages>e57597-e57597</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn(2+) tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of more robust connectivity in the frontal portion of the reward circuit of the DAT and NET knockout mice compared to the SERT knockout mice.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23469209</pmid><doi>10.1371/journal.pone.0057597</doi><tpages>e57597</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-03, Vol.8 (3), p.e57597-e57597 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1346597151 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Addictions Animals Antidepressants Anxiety Aspartic Acid - analogs & derivatives Aspartic Acid - metabolism Attention deficit hyperactivity disorder Biological transport Biology Brain Brain - metabolism Brain - pathology Brain - physiopathology Brain Mapping Brain research Catecholamines Circuits Cocaine Contrast Media - administration & dosage Correlation analysis Cortex Dopamine Dopamine Plasma Membrane Transport Proteins - deficiency Dopamine Plasma Membrane Transport Proteins - genetics Dopamine transporter Drug abuse Female Imaging techniques In vivo methods and tests Injections, Intraventricular Magnetic resonance Magnetic Resonance Imaging Male Manganese Manganese - administration & dosage Medical imaging Mental depression Mental disorders Metabolism Metabolites Mice Mice, Knockout Monoamine transporter Monoamines Morphometry Neostriatum Neural circuitry Neural networks Neurobiology Neuroimaging Neurological diseases Neurons - physiology Neurosciences Neurotransmitters Norepinephrine Norepinephrine Plasma Membrane Transport Proteins - deficiency Norepinephrine Plasma Membrane Transport Proteins - genetics Norepinephrine transporter Observations Psychological aspects Reinforcement Reward Rodents Serotonin Serotonin Plasma Membrane Transport Proteins - deficiency Serotonin Plasma Membrane Transport Proteins - genetics Serotonin transporter Signaling Spectrum analysis Stereotaxic Techniques Synaptic cleft Synaptic Transmission - physiology Transmitters |
title | Altered reward circuitry in the norepinephrine transporter knockout mouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20reward%20circuitry%20in%20the%20norepinephrine%20transporter%20knockout%20mouse&rft.jtitle=PloS%20one&rft.au=Gallagher,%20Joseph%20J&rft.date=2013-03-04&rft.volume=8&rft.issue=3&rft.spage=e57597&rft.epage=e57597&rft.pages=e57597-e57597&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0057597&rft_dat=%3Cgale_plos_%3EA478428621%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346597151&rft_id=info:pmid/23469209&rft_galeid=A478428621&rft_doaj_id=oai_doaj_org_article_e3addf501e644d828fb521464e7237c0&rfr_iscdi=true |