Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte
Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (R...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e62128 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e62128 |
container_title | PloS one |
container_volume | 8 |
creator | Biswas, Sudipta Mukherjee, Reshmi Tapryal, Nisha Singh, Amit K Mukhopadhyay, Chinmay K |
description | Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1. |
doi_str_mv | 10.1371/journal.pone.0062128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1346594986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f40011308b574df7831926a5b2988d57</doaj_id><sourcerecordid>2956612411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</originalsourceid><addsrcrecordid>eNp1Ustu1DAUjRCIlsIfILDEOoMfseNskFDFY6SRWFDWlmNfTz1K7WAnVecX-jf8CN-EO5NW7YKVH-d1dXWq6i3BK8Ja8nEX5xT0sBpjgBXGghIqn1WnpGO0FhSz54_uJ9WrnHcYcyaFeFmdUCaoaFt5Wt2uQ54HH1CC7TzoCTK63I_xxuvaBzsb3w-AnDZTTDX5-wdNSYdskh8nHwPq90VXQH8NKN7stxBQHsH44pIhZH8ADrg-8KNDP0eCShy7YPWGoLHIrR-j2U_wunrh9JDhzXKeVb--frk4_15vfnxbn3_e1IZTMdW2763uuCkv3DtwjlKnOXBJSNsDWGIpB01x1xmKHdMda5kkTDJZdmSAs7Pq_dF3HGJWyxqzIqwRvGs6KQpjfWTYqHdqTP5Kp72K2qvDR0xbpdPkzQDKNRgTwrDsedtY10pGOio072knpeVt8fq0pM39FVgDoaxweGL6FAn-Um3jtWKCsY42xeDDYpDi7xny9J-RmyPLpJhzAveQQLC668u9St31RS19KbJ3j6d7EN0XhP0DlxHBzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346594986</pqid></control><display><type>article</type><title>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Biswas, Sudipta ; Mukherjee, Reshmi ; Tapryal, Nisha ; Singh, Amit K ; Mukhopadhyay, Chinmay K</creator><contributor>Taylor, Cormac T.</contributor><creatorcontrib>Biswas, Sudipta ; Mukherjee, Reshmi ; Tapryal, Nisha ; Singh, Amit K ; Mukhopadhyay, Chinmay K ; Taylor, Cormac T.</creatorcontrib><description>Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062128</identifier><identifier>PMID: 23626778</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3T3-L1 Cells ; 5' Flanking Region ; Activation ; Adipocytes ; Adipocytes - drug effects ; Adipocytes - metabolism ; Angiogenesis ; Animals ; Biology ; Chromatin ; Cobalt ; Dihydrofolate reductase ; Electrophoretic mobility ; Gene expression ; Gene Expression Regulation ; Homeostasis ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factors ; Immunoprecipitation ; Insulin ; Insulin - pharmacology ; Kinases ; Medicine ; Mice ; Mitochondrial DNA ; Mutation ; NF-κB protein ; Oxygen ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Prolyl hydroxylase ; Protein kinase C ; Protein Kinase C - metabolism ; Protein Stability - drug effects ; Proteins ; Pulmonary arteries ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Response Elements ; RNA, Messenger - genetics ; Sequence Deletion ; Signal transduction ; Signaling ; Smooth muscle ; Sp1 protein ; Sp1 Transcription Factor - metabolism ; Stability analysis ; Transcription factors ; Transcription, Genetic - drug effects ; Vascular endothelial growth factor</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e62128</ispartof><rights>2013 Biswas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Biswas et al 2013 Biswas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</citedby><cites>FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633924/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633924/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23626778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Taylor, Cormac T.</contributor><creatorcontrib>Biswas, Sudipta</creatorcontrib><creatorcontrib>Mukherjee, Reshmi</creatorcontrib><creatorcontrib>Tapryal, Nisha</creatorcontrib><creatorcontrib>Singh, Amit K</creatorcontrib><creatorcontrib>Mukhopadhyay, Chinmay K</creatorcontrib><title>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3T3-L1 Cells</subject><subject>5' Flanking Region</subject><subject>Activation</subject><subject>Adipocytes</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biology</subject><subject>Chromatin</subject><subject>Cobalt</subject><subject>Dihydrofolate reductase</subject><subject>Electrophoretic mobility</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Homeostasis</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factors</subject><subject>Immunoprecipitation</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mitochondrial DNA</subject><subject>Mutation</subject><subject>NF-κB protein</subject><subject>Oxygen</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Prolyl hydroxylase</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Stability - drug effects</subject><subject>Proteins</subject><subject>Pulmonary arteries</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Response Elements</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Deletion</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Smooth muscle</subject><subject>Sp1 protein</subject><subject>Sp1 Transcription Factor - metabolism</subject><subject>Stability analysis</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Vascular endothelial growth factor</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ustu1DAUjRCIlsIfILDEOoMfseNskFDFY6SRWFDWlmNfTz1K7WAnVecX-jf8CN-EO5NW7YKVH-d1dXWq6i3BK8Ja8nEX5xT0sBpjgBXGghIqn1WnpGO0FhSz54_uJ9WrnHcYcyaFeFmdUCaoaFt5Wt2uQ54HH1CC7TzoCTK63I_xxuvaBzsb3w-AnDZTTDX5-wdNSYdskh8nHwPq90VXQH8NKN7stxBQHsH44pIhZH8ADrg-8KNDP0eCShy7YPWGoLHIrR-j2U_wunrh9JDhzXKeVb--frk4_15vfnxbn3_e1IZTMdW2763uuCkv3DtwjlKnOXBJSNsDWGIpB01x1xmKHdMda5kkTDJZdmSAs7Pq_dF3HGJWyxqzIqwRvGs6KQpjfWTYqHdqTP5Kp72K2qvDR0xbpdPkzQDKNRgTwrDsedtY10pGOio072knpeVt8fq0pM39FVgDoaxweGL6FAn-Um3jtWKCsY42xeDDYpDi7xny9J-RmyPLpJhzAveQQLC668u9St31RS19KbJ3j6d7EN0XhP0DlxHBzQ</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Biswas, Sudipta</creator><creator>Mukherjee, Reshmi</creator><creator>Tapryal, Nisha</creator><creator>Singh, Amit K</creator><creator>Mukhopadhyay, Chinmay K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130423</creationdate><title>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</title><author>Biswas, Sudipta ; Mukherjee, Reshmi ; Tapryal, Nisha ; Singh, Amit K ; Mukhopadhyay, Chinmay K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3T3-L1 Cells</topic><topic>5' Flanking Region</topic><topic>Activation</topic><topic>Adipocytes</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biology</topic><topic>Chromatin</topic><topic>Cobalt</topic><topic>Dihydrofolate reductase</topic><topic>Electrophoretic mobility</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Homeostasis</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factors</topic><topic>Immunoprecipitation</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mitochondrial DNA</topic><topic>Mutation</topic><topic>NF-κB protein</topic><topic>Oxygen</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Prolyl hydroxylase</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Stability - drug effects</topic><topic>Proteins</topic><topic>Pulmonary arteries</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Response Elements</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Deletion</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Smooth muscle</topic><topic>Sp1 protein</topic><topic>Sp1 Transcription Factor - metabolism</topic><topic>Stability analysis</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Sudipta</creatorcontrib><creatorcontrib>Mukherjee, Reshmi</creatorcontrib><creatorcontrib>Tapryal, Nisha</creatorcontrib><creatorcontrib>Singh, Amit K</creatorcontrib><creatorcontrib>Mukhopadhyay, Chinmay K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Sudipta</au><au>Mukherjee, Reshmi</au><au>Tapryal, Nisha</au><au>Singh, Amit K</au><au>Mukhopadhyay, Chinmay K</au><au>Taylor, Cormac T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e62128</spage><pages>e62128-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23626778</pmid><doi>10.1371/journal.pone.0062128</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-04, Vol.8 (4), p.e62128 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1346594986 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | 1-Phosphatidylinositol 3-kinase 3T3-L1 Cells 5' Flanking Region Activation Adipocytes Adipocytes - drug effects Adipocytes - metabolism Angiogenesis Animals Biology Chromatin Cobalt Dihydrofolate reductase Electrophoretic mobility Gene expression Gene Expression Regulation Homeostasis Hypoxia Hypoxia-inducible factor 1 Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Hypoxia-inducible factors Immunoprecipitation Insulin Insulin - pharmacology Kinases Medicine Mice Mitochondrial DNA Mutation NF-κB protein Oxygen Phosphatidylinositol 3-Kinases - metabolism Phosphorylation Prolyl hydroxylase Protein kinase C Protein Kinase C - metabolism Protein Stability - drug effects Proteins Pulmonary arteries Reactive oxygen species Reactive Oxygen Species - metabolism Response Elements RNA, Messenger - genetics Sequence Deletion Signal transduction Signaling Smooth muscle Sp1 protein Sp1 Transcription Factor - metabolism Stability analysis Transcription factors Transcription, Genetic - drug effects Vascular endothelial growth factor |
title | Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20regulates%20hypoxia-inducible%20factor-1%CE%B1%20transcription%20by%20reactive%20oxygen%20species%20sensitive%20activation%20of%20Sp1%20in%203T3-L1%20preadipocyte&rft.jtitle=PloS%20one&rft.au=Biswas,%20Sudipta&rft.date=2013-04-23&rft.volume=8&rft.issue=4&rft.spage=e62128&rft.pages=e62128-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062128&rft_dat=%3Cproquest_plos_%3E2956612411%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346594986&rft_id=info:pmid/23626778&rft_doaj_id=oai_doaj_org_article_f40011308b574df7831926a5b2988d57&rfr_iscdi=true |