Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte

Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-04, Vol.8 (4), p.e62128
Hauptverfasser: Biswas, Sudipta, Mukherjee, Reshmi, Tapryal, Nisha, Singh, Amit K, Mukhopadhyay, Chinmay K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e62128
container_title PloS one
container_volume 8
creator Biswas, Sudipta
Mukherjee, Reshmi
Tapryal, Nisha
Singh, Amit K
Mukhopadhyay, Chinmay K
description Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.
doi_str_mv 10.1371/journal.pone.0062128
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1346594986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f40011308b574df7831926a5b2988d57</doaj_id><sourcerecordid>2956612411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</originalsourceid><addsrcrecordid>eNp1Ustu1DAUjRCIlsIfILDEOoMfseNskFDFY6SRWFDWlmNfTz1K7WAnVecX-jf8CN-EO5NW7YKVH-d1dXWq6i3BK8Ja8nEX5xT0sBpjgBXGghIqn1WnpGO0FhSz54_uJ9WrnHcYcyaFeFmdUCaoaFt5Wt2uQ54HH1CC7TzoCTK63I_xxuvaBzsb3w-AnDZTTDX5-wdNSYdskh8nHwPq90VXQH8NKN7stxBQHsH44pIhZH8ADrg-8KNDP0eCShy7YPWGoLHIrR-j2U_wunrh9JDhzXKeVb--frk4_15vfnxbn3_e1IZTMdW2763uuCkv3DtwjlKnOXBJSNsDWGIpB01x1xmKHdMda5kkTDJZdmSAs7Pq_dF3HGJWyxqzIqwRvGs6KQpjfWTYqHdqTP5Kp72K2qvDR0xbpdPkzQDKNRgTwrDsedtY10pGOio072knpeVt8fq0pM39FVgDoaxweGL6FAn-Um3jtWKCsY42xeDDYpDi7xny9J-RmyPLpJhzAveQQLC668u9St31RS19KbJ3j6d7EN0XhP0DlxHBzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346594986</pqid></control><display><type>article</type><title>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Biswas, Sudipta ; Mukherjee, Reshmi ; Tapryal, Nisha ; Singh, Amit K ; Mukhopadhyay, Chinmay K</creator><contributor>Taylor, Cormac T.</contributor><creatorcontrib>Biswas, Sudipta ; Mukherjee, Reshmi ; Tapryal, Nisha ; Singh, Amit K ; Mukhopadhyay, Chinmay K ; Taylor, Cormac T.</creatorcontrib><description>Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062128</identifier><identifier>PMID: 23626778</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3T3-L1 Cells ; 5' Flanking Region ; Activation ; Adipocytes ; Adipocytes - drug effects ; Adipocytes - metabolism ; Angiogenesis ; Animals ; Biology ; Chromatin ; Cobalt ; Dihydrofolate reductase ; Electrophoretic mobility ; Gene expression ; Gene Expression Regulation ; Homeostasis ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factors ; Immunoprecipitation ; Insulin ; Insulin - pharmacology ; Kinases ; Medicine ; Mice ; Mitochondrial DNA ; Mutation ; NF-κB protein ; Oxygen ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Prolyl hydroxylase ; Protein kinase C ; Protein Kinase C - metabolism ; Protein Stability - drug effects ; Proteins ; Pulmonary arteries ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Response Elements ; RNA, Messenger - genetics ; Sequence Deletion ; Signal transduction ; Signaling ; Smooth muscle ; Sp1 protein ; Sp1 Transcription Factor - metabolism ; Stability analysis ; Transcription factors ; Transcription, Genetic - drug effects ; Vascular endothelial growth factor</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e62128</ispartof><rights>2013 Biswas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Biswas et al 2013 Biswas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</citedby><cites>FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633924/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633924/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23626778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Taylor, Cormac T.</contributor><creatorcontrib>Biswas, Sudipta</creatorcontrib><creatorcontrib>Mukherjee, Reshmi</creatorcontrib><creatorcontrib>Tapryal, Nisha</creatorcontrib><creatorcontrib>Singh, Amit K</creatorcontrib><creatorcontrib>Mukhopadhyay, Chinmay K</creatorcontrib><title>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3T3-L1 Cells</subject><subject>5' Flanking Region</subject><subject>Activation</subject><subject>Adipocytes</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biology</subject><subject>Chromatin</subject><subject>Cobalt</subject><subject>Dihydrofolate reductase</subject><subject>Electrophoretic mobility</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Homeostasis</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factors</subject><subject>Immunoprecipitation</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mitochondrial DNA</subject><subject>Mutation</subject><subject>NF-κB protein</subject><subject>Oxygen</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Prolyl hydroxylase</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Stability - drug effects</subject><subject>Proteins</subject><subject>Pulmonary arteries</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Response Elements</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Deletion</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Smooth muscle</subject><subject>Sp1 protein</subject><subject>Sp1 Transcription Factor - metabolism</subject><subject>Stability analysis</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Vascular endothelial growth factor</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ustu1DAUjRCIlsIfILDEOoMfseNskFDFY6SRWFDWlmNfTz1K7WAnVecX-jf8CN-EO5NW7YKVH-d1dXWq6i3BK8Ja8nEX5xT0sBpjgBXGghIqn1WnpGO0FhSz54_uJ9WrnHcYcyaFeFmdUCaoaFt5Wt2uQ54HH1CC7TzoCTK63I_xxuvaBzsb3w-AnDZTTDX5-wdNSYdskh8nHwPq90VXQH8NKN7stxBQHsH44pIhZH8ADrg-8KNDP0eCShy7YPWGoLHIrR-j2U_wunrh9JDhzXKeVb--frk4_15vfnxbn3_e1IZTMdW2763uuCkv3DtwjlKnOXBJSNsDWGIpB01x1xmKHdMda5kkTDJZdmSAs7Pq_dF3HGJWyxqzIqwRvGs6KQpjfWTYqHdqTP5Kp72K2qvDR0xbpdPkzQDKNRgTwrDsedtY10pGOio072knpeVt8fq0pM39FVgDoaxweGL6FAn-Um3jtWKCsY42xeDDYpDi7xny9J-RmyPLpJhzAveQQLC668u9St31RS19KbJ3j6d7EN0XhP0DlxHBzQ</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Biswas, Sudipta</creator><creator>Mukherjee, Reshmi</creator><creator>Tapryal, Nisha</creator><creator>Singh, Amit K</creator><creator>Mukhopadhyay, Chinmay K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130423</creationdate><title>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</title><author>Biswas, Sudipta ; Mukherjee, Reshmi ; Tapryal, Nisha ; Singh, Amit K ; Mukhopadhyay, Chinmay K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-dbbda95cc520bfeff22fa5e58117beed1d25ea2099c20f3a9373813838062ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3T3-L1 Cells</topic><topic>5' Flanking Region</topic><topic>Activation</topic><topic>Adipocytes</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biology</topic><topic>Chromatin</topic><topic>Cobalt</topic><topic>Dihydrofolate reductase</topic><topic>Electrophoretic mobility</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Homeostasis</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factors</topic><topic>Immunoprecipitation</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mitochondrial DNA</topic><topic>Mutation</topic><topic>NF-κB protein</topic><topic>Oxygen</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Prolyl hydroxylase</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Stability - drug effects</topic><topic>Proteins</topic><topic>Pulmonary arteries</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Response Elements</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Deletion</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Smooth muscle</topic><topic>Sp1 protein</topic><topic>Sp1 Transcription Factor - metabolism</topic><topic>Stability analysis</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Sudipta</creatorcontrib><creatorcontrib>Mukherjee, Reshmi</creatorcontrib><creatorcontrib>Tapryal, Nisha</creatorcontrib><creatorcontrib>Singh, Amit K</creatorcontrib><creatorcontrib>Mukhopadhyay, Chinmay K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Sudipta</au><au>Mukherjee, Reshmi</au><au>Tapryal, Nisha</au><au>Singh, Amit K</au><au>Mukhopadhyay, Chinmay K</au><au>Taylor, Cormac T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e62128</spage><pages>e62128-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23626778</pmid><doi>10.1371/journal.pone.0062128</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-04, Vol.8 (4), p.e62128
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1346594986
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects 1-Phosphatidylinositol 3-kinase
3T3-L1 Cells
5' Flanking Region
Activation
Adipocytes
Adipocytes - drug effects
Adipocytes - metabolism
Angiogenesis
Animals
Biology
Chromatin
Cobalt
Dihydrofolate reductase
Electrophoretic mobility
Gene expression
Gene Expression Regulation
Homeostasis
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-inducible factors
Immunoprecipitation
Insulin
Insulin - pharmacology
Kinases
Medicine
Mice
Mitochondrial DNA
Mutation
NF-κB protein
Oxygen
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Prolyl hydroxylase
Protein kinase C
Protein Kinase C - metabolism
Protein Stability - drug effects
Proteins
Pulmonary arteries
Reactive oxygen species
Reactive Oxygen Species - metabolism
Response Elements
RNA, Messenger - genetics
Sequence Deletion
Signal transduction
Signaling
Smooth muscle
Sp1 protein
Sp1 Transcription Factor - metabolism
Stability analysis
Transcription factors
Transcription, Genetic - drug effects
Vascular endothelial growth factor
title Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20regulates%20hypoxia-inducible%20factor-1%CE%B1%20transcription%20by%20reactive%20oxygen%20species%20sensitive%20activation%20of%20Sp1%20in%203T3-L1%20preadipocyte&rft.jtitle=PloS%20one&rft.au=Biswas,%20Sudipta&rft.date=2013-04-23&rft.volume=8&rft.issue=4&rft.spage=e62128&rft.pages=e62128-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062128&rft_dat=%3Cproquest_plos_%3E2956612411%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346594986&rft_id=info:pmid/23626778&rft_doaj_id=oai_doaj_org_article_f40011308b574df7831926a5b2988d57&rfr_iscdi=true