ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire

Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-04, Vol.8 (4), p.e62188-e62188
Hauptverfasser: Hathcock, Karen S, Bowen, Steven, Livak, Ferenc, Hodes, Richard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e62188
container_issue 4
container_start_page e62188
container_title PloS one
container_volume 8
creator Hathcock, Karen S
Bowen, Steven
Livak, Ferenc
Hodes, Richard J
description Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4(-)CD8(-) double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4(+)CD8(+) double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4(+)CD8(+) thymocytes, resulting in reduced numbers of CD4(+)CD8(+) cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4(+)CD8(+) cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.
doi_str_mv 10.1371/journal.pone.0062188
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1346594958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c7d208ce07ad44aab3dc31af1d57855e</doaj_id><sourcerecordid>1347258854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-89cc8116385e0de38965e201ada35f6b52053efcf96f0c683765bea234195bcc3</originalsourceid><addsrcrecordid>eNptUttu1DAQjRCIlsIfIIjESx_I4kvsOC9I1ZZLpSKkanm2HHu8zSprBzup1J_hI_gQvglnk1Yt4sn2zJlzZsYny15jtMK0wh92fgxOdaveO1ghxAkW4kl2jGtKCk4QffrgfpS9iHGHEKOC8-fZEaGc8EpUx9mvs823vHW2G8FpiPlwDTlY2-o2vW9zb_PN-urP7zyACkG5LezBDe_zODYRfqaaYc4XBnpw5vDONXRdbuAGOt_PcOVMvgUHQQ2tdxPrpNMHKCJ0oA_BWWd9fkWTWA9h8G2Al9kzq7oIr5bzJPvx-dNm_bW4_P7lYn12WWhG-FCIWmuBMaeCATJARc0ZEISVUZRZ3jCSRgerbc0t0lzQirMGFKElrlmjNT3J3s68feejXFYbJaYlZ3VZM5EQFzPCeLWTfWj3KtxKr1p5CPiwlSoMre5A6soQJDSgSpmyVKqhRlOsLDasEoxB4vq4qI3NHoxOOwqqe0T6OOPaa7n1N5JySkXFEsHpQhB8-oU4yH0bp7UrB3489F0RJgQrE_TdP9D_T1fOKB18jAHsfTMYyclud1Vysptc7JbK3jwc5L7ozl_0L9Ck16c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346594958</pqid></control><display><type>article</type><title>ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hathcock, Karen S ; Bowen, Steven ; Livak, Ferenc ; Hodes, Richard J</creator><contributor>Moser, Muriel</contributor><creatorcontrib>Hathcock, Karen S ; Bowen, Steven ; Livak, Ferenc ; Hodes, Richard J ; Moser, Muriel</creatorcontrib><description>Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4(-)CD8(-) double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4(+)CD8(+) double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4(+)CD8(+) thymocytes, resulting in reduced numbers of CD4(+)CD8(+) cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4(+)CD8(+) cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062188</identifier><identifier>PMID: 23626787</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antigens ; Ataxia ; Ataxia telangiectasia mutated protein ; Ataxia Telangiectasia Mutated Proteins - deficiency ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Biology ; Cancer ; CD4 antigen ; CD8 antigen ; Cell cycle ; Cell Division - genetics ; Cell Line ; Cell Survival - genetics ; Complementarity Determining Regions - genetics ; Complementarity-determining region ; Complementarity-determining region 3 ; Defects ; Deoxyribonucleic acid ; Developmental stages ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA repair ; DNA sequencing ; Double-strand break repair ; Gene Order ; Gene Rearrangement, beta-Chain T-Cell Antigen Receptor ; Gene sequencing ; Genes ; Immunoglobulins ; Immunology ; J gene ; Lymphocytes ; Lymphocytes T ; Mice ; Mice, Knockout ; Receptors ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Recombination ; T cell receptors ; T-Lymphocytes - metabolism ; Thymocytes ; Thymocytes - metabolism</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e62188-e62188</ispartof><rights>2013. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-89cc8116385e0de38965e201ada35f6b52053efcf96f0c683765bea234195bcc3</citedby><cites>FETCH-LOGICAL-c526t-89cc8116385e0de38965e201ada35f6b52053efcf96f0c683765bea234195bcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633875/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633875/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23626787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moser, Muriel</contributor><creatorcontrib>Hathcock, Karen S</creatorcontrib><creatorcontrib>Bowen, Steven</creatorcontrib><creatorcontrib>Livak, Ferenc</creatorcontrib><creatorcontrib>Hodes, Richard J</creatorcontrib><title>ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4(-)CD8(-) double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4(+)CD8(+) double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4(+)CD8(+) thymocytes, resulting in reduced numbers of CD4(+)CD8(+) cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4(+)CD8(+) cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.</description><subject>Animals</subject><subject>Antigens</subject><subject>Ataxia</subject><subject>Ataxia telangiectasia mutated protein</subject><subject>Ataxia Telangiectasia Mutated Proteins - deficiency</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Biology</subject><subject>Cancer</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell cycle</subject><subject>Cell Division - genetics</subject><subject>Cell Line</subject><subject>Cell Survival - genetics</subject><subject>Complementarity Determining Regions - genetics</subject><subject>Complementarity-determining region</subject><subject>Complementarity-determining region 3</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental stages</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA sequencing</subject><subject>Double-strand break repair</subject><subject>Gene Order</subject><subject>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Immunoglobulins</subject><subject>Immunology</subject><subject>J gene</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Receptors</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Recombination</subject><subject>T cell receptors</subject><subject>T-Lymphocytes - metabolism</subject><subject>Thymocytes</subject><subject>Thymocytes - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUttu1DAQjRCIlsIfIIjESx_I4kvsOC9I1ZZLpSKkanm2HHu8zSprBzup1J_hI_gQvglnk1Yt4sn2zJlzZsYny15jtMK0wh92fgxOdaveO1ghxAkW4kl2jGtKCk4QffrgfpS9iHGHEKOC8-fZEaGc8EpUx9mvs823vHW2G8FpiPlwDTlY2-o2vW9zb_PN-urP7zyACkG5LezBDe_zODYRfqaaYc4XBnpw5vDONXRdbuAGOt_PcOVMvgUHQQ2tdxPrpNMHKCJ0oA_BWWd9fkWTWA9h8G2Al9kzq7oIr5bzJPvx-dNm_bW4_P7lYn12WWhG-FCIWmuBMaeCATJARc0ZEISVUZRZ3jCSRgerbc0t0lzQirMGFKElrlmjNT3J3s68feejXFYbJaYlZ3VZM5EQFzPCeLWTfWj3KtxKr1p5CPiwlSoMre5A6soQJDSgSpmyVKqhRlOsLDasEoxB4vq4qI3NHoxOOwqqe0T6OOPaa7n1N5JySkXFEsHpQhB8-oU4yH0bp7UrB3489F0RJgQrE_TdP9D_T1fOKB18jAHsfTMYyclud1Vysptc7JbK3jwc5L7ozl_0L9Ck16c</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Hathcock, Karen S</creator><creator>Bowen, Steven</creator><creator>Livak, Ferenc</creator><creator>Hodes, Richard J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130423</creationdate><title>ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire</title><author>Hathcock, Karen S ; Bowen, Steven ; Livak, Ferenc ; Hodes, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-89cc8116385e0de38965e201ada35f6b52053efcf96f0c683765bea234195bcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Ataxia</topic><topic>Ataxia telangiectasia mutated protein</topic><topic>Ataxia Telangiectasia Mutated Proteins - deficiency</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Biology</topic><topic>Cancer</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell cycle</topic><topic>Cell Division - genetics</topic><topic>Cell Line</topic><topic>Cell Survival - genetics</topic><topic>Complementarity Determining Regions - genetics</topic><topic>Complementarity-determining region</topic><topic>Complementarity-determining region 3</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental stages</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA sequencing</topic><topic>Double-strand break repair</topic><topic>Gene Order</topic><topic>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Immunoglobulins</topic><topic>Immunology</topic><topic>J gene</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Receptors</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Recombination</topic><topic>T cell receptors</topic><topic>T-Lymphocytes - metabolism</topic><topic>Thymocytes</topic><topic>Thymocytes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hathcock, Karen S</creatorcontrib><creatorcontrib>Bowen, Steven</creatorcontrib><creatorcontrib>Livak, Ferenc</creatorcontrib><creatorcontrib>Hodes, Richard J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hathcock, Karen S</au><au>Bowen, Steven</au><au>Livak, Ferenc</au><au>Hodes, Richard J</au><au>Moser, Muriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e62188</spage><epage>e62188</epage><pages>e62188-e62188</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4(-)CD8(-) double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4(+)CD8(+) double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4(+)CD8(+) thymocytes, resulting in reduced numbers of CD4(+)CD8(+) cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4(+)CD8(+) cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23626787</pmid><doi>10.1371/journal.pone.0062188</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-04, Vol.8 (4), p.e62188-e62188
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1346594958
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antigens
Ataxia
Ataxia telangiectasia mutated protein
Ataxia Telangiectasia Mutated Proteins - deficiency
Ataxia Telangiectasia Mutated Proteins - genetics
Ataxia Telangiectasia Mutated Proteins - metabolism
Biology
Cancer
CD4 antigen
CD8 antigen
Cell cycle
Cell Division - genetics
Cell Line
Cell Survival - genetics
Complementarity Determining Regions - genetics
Complementarity-determining region
Complementarity-determining region 3
Defects
Deoxyribonucleic acid
Developmental stages
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA repair
DNA sequencing
Double-strand break repair
Gene Order
Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
Gene sequencing
Genes
Immunoglobulins
Immunology
J gene
Lymphocytes
Lymphocytes T
Mice
Mice, Knockout
Receptors
Receptors, Antigen, T-Cell, alpha-beta - genetics
Recombination
T cell receptors
T-Lymphocytes - metabolism
Thymocytes
Thymocytes - metabolism
title ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATM%20influences%20the%20efficiency%20of%20TCR%CE%B2%20rearrangement,%20subsequent%20TCR%CE%B2-dependent%20T%20cell%20development,%20and%20generation%20of%20the%20pre-selection%20TCR%CE%B2%20CDR3%20repertoire&rft.jtitle=PloS%20one&rft.au=Hathcock,%20Karen%20S&rft.date=2013-04-23&rft.volume=8&rft.issue=4&rft.spage=e62188&rft.epage=e62188&rft.pages=e62188-e62188&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062188&rft_dat=%3Cproquest_plos_%3E1347258854%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346594958&rft_id=info:pmid/23626787&rft_doaj_id=oai_doaj_org_article_c7d208ce07ad44aab3dc31af1d57855e&rfr_iscdi=true