Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo m...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-07, Vol.7 (7), p.e40869-e40869 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e40869 |
---|---|
container_issue | 7 |
container_start_page | e40869 |
container_title | PloS one |
container_volume | 7 |
creator | Liu, Aiping Yin, Xin Shi, Liang Li, Peng Thornburg, Kent L Wang, Ruikang Rugonyi, Sandra |
description | During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger-Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development. |
doi_str_mv | 10.1371/journal.pone.0040869 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1344463523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477051293</galeid><doaj_id>oai_doaj_org_article_5160801f533b43d3a5865961b435ffd8</doaj_id><sourcerecordid>A477051293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a2b47a5c007e01f2c83d2bfa7852c2323bcbf44191d617d42af042093b080c543</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsISG42MWnnG6QSjnsSpUqcbq1HMdOvDhxsB1g34DHxmHTaoN6gXKRePzNn5nfniR5jOAakRy92tnR9dysB9vLNYQUFll5JzlFJcGrDENy9-j7JHng_Q7ClBRZdj85wbiglCJ6mvx-o20nRct7LTywCoRWAtFq8Q3IrnJ7G-OgldwFYMegjP0JguMiAB7AZoMKMHrdN4C-BXYIWnADhG2lk72QINjONo4P7R7ojjcTx_s6At0wBh60jeWDztbSxK2HyT3FjZeP5vdZ8uX9u88Xm9Xl1YftxfnlSmQlDiuOK5rzVECYS4gUFgWpcaV4XqRYYIJJJSoVWytRnaG8ppgrSDEsSQULKFJKzpKnB93BWM9mEz1DJBqSkRSTSGwPRG35jg0u1u72zHLN_gasa1i0QwsjWYqyKItUSkhFSU14WmRpmaG4SJWqi6j1ev7bWHWyFrKP7pmF6HKn1y1r7A9GKMS0yKLAi1nA2e-j9IF12gtpDO-lHWPdkEBCyzQvI_rsH_T27maq4bEB3Ss7neckys5pnsMU4XKi1rdQ8allp0W8cUrH-CLh5SIhMkH-Cg0fvWfbTx__n736umSfH7HxIprQemvG6fb4JUgPoHDWeyfVjckIsmlgrt1g08CweWBi2pPjA7pJup4Q8gdHNhAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344463523</pqid></control><display><type>article</type><title>Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Aiping ; Yin, Xin ; Shi, Liang ; Li, Peng ; Thornburg, Kent L ; Wang, Ruikang ; Rugonyi, Sandra</creator><contributor>Merks, Roeland M.H.</contributor><creatorcontrib>Liu, Aiping ; Yin, Xin ; Shi, Liang ; Li, Peng ; Thornburg, Kent L ; Wang, Ruikang ; Rugonyi, Sandra ; Merks, Roeland M.H.</creatorcontrib><description>During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger-Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0040869</identifier><identifier>PMID: 22844414</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Arteriosclerosis ; Bioengineering ; Biology ; Biomechanical Phenomena ; Biomechanics ; Biomedical engineering ; Blood Circulation ; Blood Flow Velocity ; Blood Pressure ; Chick Embryo ; Coherence ; Computational fluid dynamics ; Computer applications ; Computer Science ; Computer Simulation ; Cues ; Cushions ; Defects ; Developmental stages ; Embryonic development ; Embryos ; Endocardium - metabolism ; Engineering ; Extracellular matrix ; Flow velocity ; Fluid dynamics ; Gene expression ; Genetic programs ; Heart ; Heart - physiology ; Heart diseases ; Hydrodynamics ; Mathematical models ; Mathematics ; Mechanical Phenomena ; Medical imaging ; Medicine ; Morphogenesis ; Movement ; Myocardium - metabolism ; Obstetrics ; Optical Coherence Tomography ; Physics ; Physiological aspects ; Residual stress ; Septum ; Shear stress ; Spatial distribution ; Stimuli ; Stress, Mechanical ; Thrombosis ; Time Factors ; Tomography ; Tomography, Optical Coherence ; Ultrasonic imaging ; Uncertainty ; Wall shear stresses</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e40869-e40869</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Liu et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a2b47a5c007e01f2c83d2bfa7852c2323bcbf44191d617d42af042093b080c543</citedby><cites>FETCH-LOGICAL-c692t-a2b47a5c007e01f2c83d2bfa7852c2323bcbf44191d617d42af042093b080c543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402486/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402486/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22844414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Merks, Roeland M.H.</contributor><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Thornburg, Kent L</creatorcontrib><creatorcontrib>Wang, Ruikang</creatorcontrib><creatorcontrib>Rugonyi, Sandra</creatorcontrib><title>Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger-Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.</description><subject>Animals</subject><subject>Arteriosclerosis</subject><subject>Bioengineering</subject><subject>Biology</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Biomedical engineering</subject><subject>Blood Circulation</subject><subject>Blood Flow Velocity</subject><subject>Blood Pressure</subject><subject>Chick Embryo</subject><subject>Coherence</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Cues</subject><subject>Cushions</subject><subject>Defects</subject><subject>Developmental stages</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Endocardium - metabolism</subject><subject>Engineering</subject><subject>Extracellular matrix</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Gene expression</subject><subject>Genetic programs</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Heart diseases</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanical Phenomena</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Morphogenesis</subject><subject>Movement</subject><subject>Myocardium - metabolism</subject><subject>Obstetrics</subject><subject>Optical Coherence Tomography</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Residual stress</subject><subject>Septum</subject><subject>Shear stress</subject><subject>Spatial distribution</subject><subject>Stimuli</subject><subject>Stress, Mechanical</subject><subject>Thrombosis</subject><subject>Time Factors</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence</subject><subject>Ultrasonic imaging</subject><subject>Uncertainty</subject><subject>Wall shear stresses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsISG42MWnnG6QSjnsSpUqcbq1HMdOvDhxsB1g34DHxmHTaoN6gXKRePzNn5nfniR5jOAakRy92tnR9dysB9vLNYQUFll5JzlFJcGrDENy9-j7JHng_Q7ClBRZdj85wbiglCJ6mvx-o20nRct7LTywCoRWAtFq8Q3IrnJ7G-OgldwFYMegjP0JguMiAB7AZoMKMHrdN4C-BXYIWnADhG2lk72QINjONo4P7R7ojjcTx_s6At0wBh60jeWDztbSxK2HyT3FjZeP5vdZ8uX9u88Xm9Xl1YftxfnlSmQlDiuOK5rzVECYS4gUFgWpcaV4XqRYYIJJJSoVWytRnaG8ppgrSDEsSQULKFJKzpKnB93BWM9mEz1DJBqSkRSTSGwPRG35jg0u1u72zHLN_gasa1i0QwsjWYqyKItUSkhFSU14WmRpmaG4SJWqi6j1ev7bWHWyFrKP7pmF6HKn1y1r7A9GKMS0yKLAi1nA2e-j9IF12gtpDO-lHWPdkEBCyzQvI_rsH_T27maq4bEB3Ss7neckys5pnsMU4XKi1rdQ8allp0W8cUrH-CLh5SIhMkH-Cg0fvWfbTx__n736umSfH7HxIprQemvG6fb4JUgPoHDWeyfVjckIsmlgrt1g08CweWBi2pPjA7pJup4Q8gdHNhAk</recordid><startdate>20120723</startdate><enddate>20120723</enddate><creator>Liu, Aiping</creator><creator>Yin, Xin</creator><creator>Shi, Liang</creator><creator>Li, Peng</creator><creator>Thornburg, Kent L</creator><creator>Wang, Ruikang</creator><creator>Rugonyi, Sandra</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120723</creationdate><title>Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling</title><author>Liu, Aiping ; Yin, Xin ; Shi, Liang ; Li, Peng ; Thornburg, Kent L ; Wang, Ruikang ; Rugonyi, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a2b47a5c007e01f2c83d2bfa7852c2323bcbf44191d617d42af042093b080c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Arteriosclerosis</topic><topic>Bioengineering</topic><topic>Biology</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Biomedical engineering</topic><topic>Blood Circulation</topic><topic>Blood Flow Velocity</topic><topic>Blood Pressure</topic><topic>Chick Embryo</topic><topic>Coherence</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Cues</topic><topic>Cushions</topic><topic>Defects</topic><topic>Developmental stages</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Endocardium - metabolism</topic><topic>Engineering</topic><topic>Extracellular matrix</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Gene expression</topic><topic>Genetic programs</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Heart diseases</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanical Phenomena</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Morphogenesis</topic><topic>Movement</topic><topic>Myocardium - metabolism</topic><topic>Obstetrics</topic><topic>Optical Coherence Tomography</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Residual stress</topic><topic>Septum</topic><topic>Shear stress</topic><topic>Spatial distribution</topic><topic>Stimuli</topic><topic>Stress, Mechanical</topic><topic>Thrombosis</topic><topic>Time Factors</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence</topic><topic>Ultrasonic imaging</topic><topic>Uncertainty</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Yin, Xin</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Thornburg, Kent L</creatorcontrib><creatorcontrib>Wang, Ruikang</creatorcontrib><creatorcontrib>Rugonyi, Sandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Aiping</au><au>Yin, Xin</au><au>Shi, Liang</au><au>Li, Peng</au><au>Thornburg, Kent L</au><au>Wang, Ruikang</au><au>Rugonyi, Sandra</au><au>Merks, Roeland M.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-23</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e40869</spage><epage>e40869</epage><pages>e40869-e40869</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger-Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22844414</pmid><doi>10.1371/journal.pone.0040869</doi><tpages>e40869</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-07, Vol.7 (7), p.e40869-e40869 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1344463523 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Arteriosclerosis Bioengineering Biology Biomechanical Phenomena Biomechanics Biomedical engineering Blood Circulation Blood Flow Velocity Blood Pressure Chick Embryo Coherence Computational fluid dynamics Computer applications Computer Science Computer Simulation Cues Cushions Defects Developmental stages Embryonic development Embryos Endocardium - metabolism Engineering Extracellular matrix Flow velocity Fluid dynamics Gene expression Genetic programs Heart Heart - physiology Heart diseases Hydrodynamics Mathematical models Mathematics Mechanical Phenomena Medical imaging Medicine Morphogenesis Movement Myocardium - metabolism Obstetrics Optical Coherence Tomography Physics Physiological aspects Residual stress Septum Shear stress Spatial distribution Stimuli Stress, Mechanical Thrombosis Time Factors Tomography Tomography, Optical Coherence Ultrasonic imaging Uncertainty Wall shear stresses |
title | Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanics%20of%20the%20chick%20embryonic%20heart%20outflow%20tract%20at%20HH18%20using%204D%20optical%20coherence%20tomography%20imaging%20and%20computational%20modeling&rft.jtitle=PloS%20one&rft.au=Liu,%20Aiping&rft.date=2012-07-23&rft.volume=7&rft.issue=7&rft.spage=e40869&rft.epage=e40869&rft.pages=e40869-e40869&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0040869&rft_dat=%3Cgale_plos_%3EA477051293%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1344463523&rft_id=info:pmid/22844414&rft_galeid=A477051293&rft_doaj_id=oai_doaj_org_article_5160801f533b43d3a5865961b435ffd8&rfr_iscdi=true |