Mechanism of nucleic acid unwinding by SARS-CoV helicase
The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase func...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-05, Vol.7 (5), p.e36521-e36521 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e36521 |
---|---|
container_issue | 5 |
container_start_page | e36521 |
container_title | PloS one |
container_volume | 7 |
creator | Adedeji, Adeyemi O Marchand, Bruno Te Velthuis, Aartjan J W Snijder, Eric J Weiss, Susan Eoff, Robert L Singh, Kamalendra Sarafianos, Stefan G |
description | The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis. |
doi_str_mv | 10.1371/journal.pone.0036521 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1344321056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083235</galeid><doaj_id>oai_doaj_org_article_76581fc99ad048059d5b00d92b33f4f4</doaj_id><sourcerecordid>A477083235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-198eda8a46da47498322cd5cd00dc6cfead55cf42a9ce50cf2a866ba558ddba23</originalsourceid><addsrcrecordid>eNqNkluLEzEYhgdR3IP-A9EBYdGL1pxn5kYoxUNhZWGrexu-yaFNmSbdyYy6_97Uzi4d2QvJRULyfO93yJtlrzCaYlrgD5vQtx6a6S54M0WICk7wk-wUV5RMBEH06dH5JDuLcYMQp6UQz7MTQgTmRVGcZuU3o9bgXdzmwea-V41xKgfldN77X85r51d5fZcvZ9fLyTzc5GvTOAXRvMieWWiieTns59mPz5--z79OLq--LOazy4kSFekmuCqNhhKY0MAKVpWUEKW50ghpJZQ1oDlXlhGolOFIWQKpxBo4L7WugdDz7M1Bd9eEKIemo8SUMUow4iIRiwOhA2zkrnVbaO9kACf_XoR2JaHtXOpMFoKX2KqqAo1YiXileZ0KqUhNqWWWJa2PQ7a-3hqtjO9aaEai4xfv1nIVfkpKOalwmQTeDQJtuO1N7OTWRWWaBrwJfaobYc5EUXCe0Lf_oI93N1ArSA04b0PKq_aicsaKAqWB0r3W9BEqLW22TiWHWJfuRwHvRwGJ6czvbgV9jHKxvP5_9upmzF4csWsDTbeOoek7F3wcg-wAqjbE2Br7MGSM5N7g99OQe4PLweAp7PXxBz0E3Tua_gGFB_PA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344321056</pqid></control><display><type>article</type><title>Mechanism of nucleic acid unwinding by SARS-CoV helicase</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Adedeji, Adeyemi O ; Marchand, Bruno ; Te Velthuis, Aartjan J W ; Snijder, Eric J ; Weiss, Susan ; Eoff, Robert L ; Singh, Kamalendra ; Sarafianos, Stefan G</creator><creatorcontrib>Adedeji, Adeyemi O ; Marchand, Bruno ; Te Velthuis, Aartjan J W ; Snijder, Eric J ; Weiss, Susan ; Eoff, Robert L ; Singh, Kamalendra ; Sarafianos, Stefan G</creatorcontrib><description>The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0036521</identifier><identifier>PMID: 22615777</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Biochemistry ; Biology ; Catalysis ; Coronaviridae ; Coronaviruses ; Deinococcus radiodurans ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA Helicases - metabolism ; DNA-directed RNA polymerase ; Double-stranded RNA ; Energy consumption ; Energy use ; Enzymes ; Foot & mouth disease ; Gene expression ; Health aspects ; Hepatitis ; Hydrolysis ; Immunology ; Infectious diseases ; Intermediates ; Laboratories ; Life sciences ; Medicine ; Nucleic acids ; Nucleic Acids - metabolism ; Polarity ; Polymerase ; Proteins ; Ribonucleic acid ; RNA ; RNA helicase ; RNA synthesis ; RNA-directed RNA polymerase ; SARS Virus - enzymology ; Severe acute respiratory syndrome ; Substrate Specificity ; Transcription ; Unwinding ; Virology ; Viruses</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e36521-e36521</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Adedeji et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Adedeji et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-198eda8a46da47498322cd5cd00dc6cfead55cf42a9ce50cf2a866ba558ddba23</citedby><cites>FETCH-LOGICAL-c692t-198eda8a46da47498322cd5cd00dc6cfead55cf42a9ce50cf2a866ba558ddba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352918/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352918/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22615777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adedeji, Adeyemi O</creatorcontrib><creatorcontrib>Marchand, Bruno</creatorcontrib><creatorcontrib>Te Velthuis, Aartjan J W</creatorcontrib><creatorcontrib>Snijder, Eric J</creatorcontrib><creatorcontrib>Weiss, Susan</creatorcontrib><creatorcontrib>Eoff, Robert L</creatorcontrib><creatorcontrib>Singh, Kamalendra</creatorcontrib><creatorcontrib>Sarafianos, Stefan G</creatorcontrib><title>Mechanism of nucleic acid unwinding by SARS-CoV helicase</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.</description><subject>Acids</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Catalysis</subject><subject>Coronaviridae</subject><subject>Coronaviruses</subject><subject>Deinococcus radiodurans</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA Helicases - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Double-stranded RNA</subject><subject>Energy consumption</subject><subject>Energy use</subject><subject>Enzymes</subject><subject>Foot & mouth disease</subject><subject>Gene expression</subject><subject>Health aspects</subject><subject>Hepatitis</subject><subject>Hydrolysis</subject><subject>Immunology</subject><subject>Infectious diseases</subject><subject>Intermediates</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Medicine</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - metabolism</subject><subject>Polarity</subject><subject>Polymerase</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA helicase</subject><subject>RNA synthesis</subject><subject>RNA-directed RNA polymerase</subject><subject>SARS Virus - enzymology</subject><subject>Severe acute respiratory syndrome</subject><subject>Substrate Specificity</subject><subject>Transcription</subject><subject>Unwinding</subject><subject>Virology</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluLEzEYhgdR3IP-A9EBYdGL1pxn5kYoxUNhZWGrexu-yaFNmSbdyYy6_97Uzi4d2QvJRULyfO93yJtlrzCaYlrgD5vQtx6a6S54M0WICk7wk-wUV5RMBEH06dH5JDuLcYMQp6UQz7MTQgTmRVGcZuU3o9bgXdzmwea-V41xKgfldN77X85r51d5fZcvZ9fLyTzc5GvTOAXRvMieWWiieTns59mPz5--z79OLq--LOazy4kSFekmuCqNhhKY0MAKVpWUEKW50ghpJZQ1oDlXlhGolOFIWQKpxBo4L7WugdDz7M1Bd9eEKIemo8SUMUow4iIRiwOhA2zkrnVbaO9kACf_XoR2JaHtXOpMFoKX2KqqAo1YiXileZ0KqUhNqWWWJa2PQ7a-3hqtjO9aaEai4xfv1nIVfkpKOalwmQTeDQJtuO1N7OTWRWWaBrwJfaobYc5EUXCe0Lf_oI93N1ArSA04b0PKq_aicsaKAqWB0r3W9BEqLW22TiWHWJfuRwHvRwGJ6czvbgV9jHKxvP5_9upmzF4csWsDTbeOoek7F3wcg-wAqjbE2Br7MGSM5N7g99OQe4PLweAp7PXxBz0E3Tua_gGFB_PA</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Adedeji, Adeyemi O</creator><creator>Marchand, Bruno</creator><creator>Te Velthuis, Aartjan J W</creator><creator>Snijder, Eric J</creator><creator>Weiss, Susan</creator><creator>Eoff, Robert L</creator><creator>Singh, Kamalendra</creator><creator>Sarafianos, Stefan G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120515</creationdate><title>Mechanism of nucleic acid unwinding by SARS-CoV helicase</title><author>Adedeji, Adeyemi O ; Marchand, Bruno ; Te Velthuis, Aartjan J W ; Snijder, Eric J ; Weiss, Susan ; Eoff, Robert L ; Singh, Kamalendra ; Sarafianos, Stefan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-198eda8a46da47498322cd5cd00dc6cfead55cf42a9ce50cf2a866ba558ddba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acids</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Catalysis</topic><topic>Coronaviridae</topic><topic>Coronaviruses</topic><topic>Deinococcus radiodurans</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA Helicases - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Double-stranded RNA</topic><topic>Energy consumption</topic><topic>Energy use</topic><topic>Enzymes</topic><topic>Foot & mouth disease</topic><topic>Gene expression</topic><topic>Health aspects</topic><topic>Hepatitis</topic><topic>Hydrolysis</topic><topic>Immunology</topic><topic>Infectious diseases</topic><topic>Intermediates</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Medicine</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - metabolism</topic><topic>Polarity</topic><topic>Polymerase</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA helicase</topic><topic>RNA synthesis</topic><topic>RNA-directed RNA polymerase</topic><topic>SARS Virus - enzymology</topic><topic>Severe acute respiratory syndrome</topic><topic>Substrate Specificity</topic><topic>Transcription</topic><topic>Unwinding</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adedeji, Adeyemi O</creatorcontrib><creatorcontrib>Marchand, Bruno</creatorcontrib><creatorcontrib>Te Velthuis, Aartjan J W</creatorcontrib><creatorcontrib>Snijder, Eric J</creatorcontrib><creatorcontrib>Weiss, Susan</creatorcontrib><creatorcontrib>Eoff, Robert L</creatorcontrib><creatorcontrib>Singh, Kamalendra</creatorcontrib><creatorcontrib>Sarafianos, Stefan G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adedeji, Adeyemi O</au><au>Marchand, Bruno</au><au>Te Velthuis, Aartjan J W</au><au>Snijder, Eric J</au><au>Weiss, Susan</au><au>Eoff, Robert L</au><au>Singh, Kamalendra</au><au>Sarafianos, Stefan G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of nucleic acid unwinding by SARS-CoV helicase</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e36521</spage><epage>e36521</epage><pages>e36521-e36521</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22615777</pmid><doi>10.1371/journal.pone.0036521</doi><tpages>e36521</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-05, Vol.7 (5), p.e36521-e36521 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1344321056 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acids Biochemistry Biology Catalysis Coronaviridae Coronaviruses Deinococcus radiodurans Deoxyribonucleic acid DNA DNA helicase DNA Helicases - metabolism DNA-directed RNA polymerase Double-stranded RNA Energy consumption Energy use Enzymes Foot & mouth disease Gene expression Health aspects Hepatitis Hydrolysis Immunology Infectious diseases Intermediates Laboratories Life sciences Medicine Nucleic acids Nucleic Acids - metabolism Polarity Polymerase Proteins Ribonucleic acid RNA RNA helicase RNA synthesis RNA-directed RNA polymerase SARS Virus - enzymology Severe acute respiratory syndrome Substrate Specificity Transcription Unwinding Virology Viruses |
title | Mechanism of nucleic acid unwinding by SARS-CoV helicase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20nucleic%20acid%20unwinding%20by%20SARS-CoV%20helicase&rft.jtitle=PloS%20one&rft.au=Adedeji,%20Adeyemi%20O&rft.date=2012-05-15&rft.volume=7&rft.issue=5&rft.spage=e36521&rft.epage=e36521&rft.pages=e36521-e36521&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0036521&rft_dat=%3Cgale_plos_%3EA477083235%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1344321056&rft_id=info:pmid/22615777&rft_galeid=A477083235&rft_doaj_id=oai_doaj_org_article_76581fc99ad048059d5b00d92b33f4f4&rfr_iscdi=true |