Defining the genomic signature of totipotency and pluripotency during early human development

The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-04, Vol.8 (4), p.e62135-e62135
Hauptverfasser: Galan, Amparo, Diaz-Gimeno, Patricia, Poo, Maria Eugenia, Valbuena, Diana, Sanchez, Eva, Ruiz, Veronica, Dopazo, Joaquin, Montaner, David, Conesa, Ana, Simon, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e62135
container_issue 4
container_start_page e62135
container_title PloS one
container_volume 8
creator Galan, Amparo
Diaz-Gimeno, Patricia
Poo, Maria Eugenia
Valbuena, Diana
Sanchez, Eva
Ruiz, Veronica
Dopazo, Joaquin
Montaner, David
Conesa, Ana
Simon, Carlos
description The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.
doi_str_mv 10.1371/journal.pone.0062135
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1344162532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478243096</galeid><doaj_id>oai_doaj_org_article_0d0e73180e0e49bc948a228200fa8b93</doaj_id><sourcerecordid>A478243096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq2t4Iy_o1sLDg152ENDnpZOkktUkX59-b2ekOU9kLyUXC6fO-p-ckJ8ueY7TEtMTvrv04ONkte-9giRAnmBYPslNcU7LgBNGHR-eT7EkI1wgVtOL8cXZCKMcMEX6a_foAxjrr2jyuIW_B-Y1VebCtk3EcIPcmjz7a3kdwaptLp_O-G4dDQKdzEoMcum2-HjfS5RpuoPP9Blx8mj0ysgvwbNrPsh-fPn6_-LK4vPq8uji_XChek7iAsuacV7opmELScFwpgIYhprGuC4MlKzkrmcFlY5DiVFaF0UZSVVRFrRtNz7KXe9--80FMnQkCU8YwJwUliVjtCe3ltegHu5HDVnhpxW3AD62QQ7SqA4E0gpLiCgECVjeqZpUkpCIIGVk1NU1e76dsY7MBrVKhg-xmpvMvzq5F628E5aTGhCWDN5PB4H-PEKLY2KCg66QDP97-N8c4NaVM6Kt_0Purm6hWpgKsMz7lVTtTcc7KKqVENU_U8h4qLQ3p0tMzMjbFZ4K3M0FiIvyJrRxDEKtvX_-fvfo5Z18fsWuQXVwH343RehfmINuDavAhDGAOTcZI7KbgrhtiNwVimoIke3F8QQfR3bOnfwGqgQL0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344162532</pqid></control><display><type>article</type><title>Defining the genomic signature of totipotency and pluripotency during early human development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Galan, Amparo ; Diaz-Gimeno, Patricia ; Poo, Maria Eugenia ; Valbuena, Diana ; Sanchez, Eva ; Ruiz, Veronica ; Dopazo, Joaquin ; Montaner, David ; Conesa, Ana ; Simon, Carlos</creator><contributor>Xu, Ying</contributor><creatorcontrib>Galan, Amparo ; Diaz-Gimeno, Patricia ; Poo, Maria Eugenia ; Valbuena, Diana ; Sanchez, Eva ; Ruiz, Veronica ; Dopazo, Joaquin ; Montaner, David ; Conesa, Ana ; Simon, Carlos ; Xu, Ying</creatorcontrib><description>The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062135</identifier><identifier>PMID: 23614026</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bioinformatics ; Biology ; Blastocyst Inner Cell Mass - cytology ; Blastocyst Inner Cell Mass - metabolism ; Blastocysts ; Blastomeres ; Blastomeres - cytology ; Blastomeres - metabolism ; Cell culture ; Cell Differentiation - genetics ; Comparative analysis ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Embryo cells ; Embryogenesis ; Embryonic development ; Embryonic Development - genetics ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Embryos ; Functional analysis ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks - genetics ; Genes ; Genome, Human - genetics ; Genomes ; Genomics ; Humans ; Implantation ; Molecular Sequence Annotation ; Ontology ; Pluripotency ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Principal components analysis ; Signaling ; Stem cells ; Studies ; Surgical implants ; Totipotent Stem Cells - cytology ; Totipotent Stem Cells - metabolism</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e62135-e62135</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Galan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Galan et al 2013 Galan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</citedby><cites>FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23614026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Xu, Ying</contributor><creatorcontrib>Galan, Amparo</creatorcontrib><creatorcontrib>Diaz-Gimeno, Patricia</creatorcontrib><creatorcontrib>Poo, Maria Eugenia</creatorcontrib><creatorcontrib>Valbuena, Diana</creatorcontrib><creatorcontrib>Sanchez, Eva</creatorcontrib><creatorcontrib>Ruiz, Veronica</creatorcontrib><creatorcontrib>Dopazo, Joaquin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Simon, Carlos</creatorcontrib><title>Defining the genomic signature of totipotency and pluripotency during early human development</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.</description><subject>Bioinformatics</subject><subject>Biology</subject><subject>Blastocyst Inner Cell Mass - cytology</subject><subject>Blastocyst Inner Cell Mass - metabolism</subject><subject>Blastocysts</subject><subject>Blastomeres</subject><subject>Blastomeres - cytology</subject><subject>Blastomeres - metabolism</subject><subject>Cell culture</subject><subject>Cell Differentiation - genetics</subject><subject>Comparative analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Embryo cells</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryos</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Implantation</subject><subject>Molecular Sequence Annotation</subject><subject>Ontology</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Principal components analysis</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Totipotent Stem Cells - cytology</subject><subject>Totipotent Stem Cells - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq2t4Iy_o1sLDg152ENDnpZOkktUkX59-b2ekOU9kLyUXC6fO-p-ckJ8ueY7TEtMTvrv04ONkte-9giRAnmBYPslNcU7LgBNGHR-eT7EkI1wgVtOL8cXZCKMcMEX6a_foAxjrr2jyuIW_B-Y1VebCtk3EcIPcmjz7a3kdwaptLp_O-G4dDQKdzEoMcum2-HjfS5RpuoPP9Blx8mj0ysgvwbNrPsh-fPn6_-LK4vPq8uji_XChek7iAsuacV7opmELScFwpgIYhprGuC4MlKzkrmcFlY5DiVFaF0UZSVVRFrRtNz7KXe9--80FMnQkCU8YwJwUliVjtCe3ltegHu5HDVnhpxW3AD62QQ7SqA4E0gpLiCgECVjeqZpUkpCIIGVk1NU1e76dsY7MBrVKhg-xmpvMvzq5F628E5aTGhCWDN5PB4H-PEKLY2KCg66QDP97-N8c4NaVM6Kt_0Purm6hWpgKsMz7lVTtTcc7KKqVENU_U8h4qLQ3p0tMzMjbFZ4K3M0FiIvyJrRxDEKtvX_-fvfo5Z18fsWuQXVwH343RehfmINuDavAhDGAOTcZI7KbgrhtiNwVimoIke3F8QQfR3bOnfwGqgQL0</recordid><startdate>20130417</startdate><enddate>20130417</enddate><creator>Galan, Amparo</creator><creator>Diaz-Gimeno, Patricia</creator><creator>Poo, Maria Eugenia</creator><creator>Valbuena, Diana</creator><creator>Sanchez, Eva</creator><creator>Ruiz, Veronica</creator><creator>Dopazo, Joaquin</creator><creator>Montaner, David</creator><creator>Conesa, Ana</creator><creator>Simon, Carlos</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130417</creationdate><title>Defining the genomic signature of totipotency and pluripotency during early human development</title><author>Galan, Amparo ; Diaz-Gimeno, Patricia ; Poo, Maria Eugenia ; Valbuena, Diana ; Sanchez, Eva ; Ruiz, Veronica ; Dopazo, Joaquin ; Montaner, David ; Conesa, Ana ; Simon, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioinformatics</topic><topic>Biology</topic><topic>Blastocyst Inner Cell Mass - cytology</topic><topic>Blastocyst Inner Cell Mass - metabolism</topic><topic>Blastocysts</topic><topic>Blastomeres</topic><topic>Blastomeres - cytology</topic><topic>Blastomeres - metabolism</topic><topic>Cell culture</topic><topic>Cell Differentiation - genetics</topic><topic>Comparative analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Embryo cells</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryos</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Implantation</topic><topic>Molecular Sequence Annotation</topic><topic>Ontology</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Principal components analysis</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Totipotent Stem Cells - cytology</topic><topic>Totipotent Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galan, Amparo</creatorcontrib><creatorcontrib>Diaz-Gimeno, Patricia</creatorcontrib><creatorcontrib>Poo, Maria Eugenia</creatorcontrib><creatorcontrib>Valbuena, Diana</creatorcontrib><creatorcontrib>Sanchez, Eva</creatorcontrib><creatorcontrib>Ruiz, Veronica</creatorcontrib><creatorcontrib>Dopazo, Joaquin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Simon, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galan, Amparo</au><au>Diaz-Gimeno, Patricia</au><au>Poo, Maria Eugenia</au><au>Valbuena, Diana</au><au>Sanchez, Eva</au><au>Ruiz, Veronica</au><au>Dopazo, Joaquin</au><au>Montaner, David</au><au>Conesa, Ana</au><au>Simon, Carlos</au><au>Xu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the genomic signature of totipotency and pluripotency during early human development</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-17</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e62135</spage><epage>e62135</epage><pages>e62135-e62135</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23614026</pmid><doi>10.1371/journal.pone.0062135</doi><tpages>e62135</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-04, Vol.8 (4), p.e62135-e62135
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1344162532
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bioinformatics
Biology
Blastocyst Inner Cell Mass - cytology
Blastocyst Inner Cell Mass - metabolism
Blastocysts
Blastomeres
Blastomeres - cytology
Blastomeres - metabolism
Cell culture
Cell Differentiation - genetics
Comparative analysis
Deoxyribonucleic acid
DNA
DNA methylation
Embryo cells
Embryogenesis
Embryonic development
Embryonic Development - genetics
Embryonic stem cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Embryos
Functional analysis
Gene expression
Gene Expression Profiling
Gene Regulatory Networks - genetics
Genes
Genome, Human - genetics
Genomes
Genomics
Humans
Implantation
Molecular Sequence Annotation
Ontology
Pluripotency
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Principal components analysis
Signaling
Stem cells
Studies
Surgical implants
Totipotent Stem Cells - cytology
Totipotent Stem Cells - metabolism
title Defining the genomic signature of totipotency and pluripotency during early human development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20genomic%20signature%20of%20totipotency%20and%20pluripotency%20during%20early%20human%20development&rft.jtitle=PloS%20one&rft.au=Galan,%20Amparo&rft.date=2013-04-17&rft.volume=8&rft.issue=4&rft.spage=e62135&rft.epage=e62135&rft.pages=e62135-e62135&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062135&rft_dat=%3Cgale_plos_%3EA478243096%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1344162532&rft_id=info:pmid/23614026&rft_galeid=A478243096&rft_doaj_id=oai_doaj_org_article_0d0e73180e0e49bc948a228200fa8b93&rfr_iscdi=true