Defining the genomic signature of totipotency and pluripotency during early human development
The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (I...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e62135-e62135 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e62135 |
---|---|
container_issue | 4 |
container_start_page | e62135 |
container_title | PloS one |
container_volume | 8 |
creator | Galan, Amparo Diaz-Gimeno, Patricia Poo, Maria Eugenia Valbuena, Diana Sanchez, Eva Ruiz, Veronica Dopazo, Joaquin Montaner, David Conesa, Ana Simon, Carlos |
description | The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. |
doi_str_mv | 10.1371/journal.pone.0062135 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1344162532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478243096</galeid><doaj_id>oai_doaj_org_article_0d0e73180e0e49bc948a228200fa8b93</doaj_id><sourcerecordid>A478243096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq2t4Iy_o1sLDg152ENDnpZOkktUkX59-b2ekOU9kLyUXC6fO-p-ckJ8ueY7TEtMTvrv04ONkte-9giRAnmBYPslNcU7LgBNGHR-eT7EkI1wgVtOL8cXZCKMcMEX6a_foAxjrr2jyuIW_B-Y1VebCtk3EcIPcmjz7a3kdwaptLp_O-G4dDQKdzEoMcum2-HjfS5RpuoPP9Blx8mj0ysgvwbNrPsh-fPn6_-LK4vPq8uji_XChek7iAsuacV7opmELScFwpgIYhprGuC4MlKzkrmcFlY5DiVFaF0UZSVVRFrRtNz7KXe9--80FMnQkCU8YwJwUliVjtCe3ltegHu5HDVnhpxW3AD62QQ7SqA4E0gpLiCgECVjeqZpUkpCIIGVk1NU1e76dsY7MBrVKhg-xmpvMvzq5F628E5aTGhCWDN5PB4H-PEKLY2KCg66QDP97-N8c4NaVM6Kt_0Purm6hWpgKsMz7lVTtTcc7KKqVENU_U8h4qLQ3p0tMzMjbFZ4K3M0FiIvyJrRxDEKtvX_-fvfo5Z18fsWuQXVwH343RehfmINuDavAhDGAOTcZI7KbgrhtiNwVimoIke3F8QQfR3bOnfwGqgQL0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344162532</pqid></control><display><type>article</type><title>Defining the genomic signature of totipotency and pluripotency during early human development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Galan, Amparo ; Diaz-Gimeno, Patricia ; Poo, Maria Eugenia ; Valbuena, Diana ; Sanchez, Eva ; Ruiz, Veronica ; Dopazo, Joaquin ; Montaner, David ; Conesa, Ana ; Simon, Carlos</creator><contributor>Xu, Ying</contributor><creatorcontrib>Galan, Amparo ; Diaz-Gimeno, Patricia ; Poo, Maria Eugenia ; Valbuena, Diana ; Sanchez, Eva ; Ruiz, Veronica ; Dopazo, Joaquin ; Montaner, David ; Conesa, Ana ; Simon, Carlos ; Xu, Ying</creatorcontrib><description>The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062135</identifier><identifier>PMID: 23614026</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bioinformatics ; Biology ; Blastocyst Inner Cell Mass - cytology ; Blastocyst Inner Cell Mass - metabolism ; Blastocysts ; Blastomeres ; Blastomeres - cytology ; Blastomeres - metabolism ; Cell culture ; Cell Differentiation - genetics ; Comparative analysis ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Embryo cells ; Embryogenesis ; Embryonic development ; Embryonic Development - genetics ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Embryos ; Functional analysis ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks - genetics ; Genes ; Genome, Human - genetics ; Genomes ; Genomics ; Humans ; Implantation ; Molecular Sequence Annotation ; Ontology ; Pluripotency ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Principal components analysis ; Signaling ; Stem cells ; Studies ; Surgical implants ; Totipotent Stem Cells - cytology ; Totipotent Stem Cells - metabolism</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e62135-e62135</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Galan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Galan et al 2013 Galan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</citedby><cites>FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23614026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Xu, Ying</contributor><creatorcontrib>Galan, Amparo</creatorcontrib><creatorcontrib>Diaz-Gimeno, Patricia</creatorcontrib><creatorcontrib>Poo, Maria Eugenia</creatorcontrib><creatorcontrib>Valbuena, Diana</creatorcontrib><creatorcontrib>Sanchez, Eva</creatorcontrib><creatorcontrib>Ruiz, Veronica</creatorcontrib><creatorcontrib>Dopazo, Joaquin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Simon, Carlos</creatorcontrib><title>Defining the genomic signature of totipotency and pluripotency during early human development</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.</description><subject>Bioinformatics</subject><subject>Biology</subject><subject>Blastocyst Inner Cell Mass - cytology</subject><subject>Blastocyst Inner Cell Mass - metabolism</subject><subject>Blastocysts</subject><subject>Blastomeres</subject><subject>Blastomeres - cytology</subject><subject>Blastomeres - metabolism</subject><subject>Cell culture</subject><subject>Cell Differentiation - genetics</subject><subject>Comparative analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Embryo cells</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryos</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Implantation</subject><subject>Molecular Sequence Annotation</subject><subject>Ontology</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Principal components analysis</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Totipotent Stem Cells - cytology</subject><subject>Totipotent Stem Cells - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlq2t4Iy_o1sLDg152ENDnpZOkktUkX59-b2ekOU9kLyUXC6fO-p-ckJ8ueY7TEtMTvrv04ONkte-9giRAnmBYPslNcU7LgBNGHR-eT7EkI1wgVtOL8cXZCKMcMEX6a_foAxjrr2jyuIW_B-Y1VebCtk3EcIPcmjz7a3kdwaptLp_O-G4dDQKdzEoMcum2-HjfS5RpuoPP9Blx8mj0ysgvwbNrPsh-fPn6_-LK4vPq8uji_XChek7iAsuacV7opmELScFwpgIYhprGuC4MlKzkrmcFlY5DiVFaF0UZSVVRFrRtNz7KXe9--80FMnQkCU8YwJwUliVjtCe3ltegHu5HDVnhpxW3AD62QQ7SqA4E0gpLiCgECVjeqZpUkpCIIGVk1NU1e76dsY7MBrVKhg-xmpvMvzq5F628E5aTGhCWDN5PB4H-PEKLY2KCg66QDP97-N8c4NaVM6Kt_0Purm6hWpgKsMz7lVTtTcc7KKqVENU_U8h4qLQ3p0tMzMjbFZ4K3M0FiIvyJrRxDEKtvX_-fvfo5Z18fsWuQXVwH343RehfmINuDavAhDGAOTcZI7KbgrhtiNwVimoIke3F8QQfR3bOnfwGqgQL0</recordid><startdate>20130417</startdate><enddate>20130417</enddate><creator>Galan, Amparo</creator><creator>Diaz-Gimeno, Patricia</creator><creator>Poo, Maria Eugenia</creator><creator>Valbuena, Diana</creator><creator>Sanchez, Eva</creator><creator>Ruiz, Veronica</creator><creator>Dopazo, Joaquin</creator><creator>Montaner, David</creator><creator>Conesa, Ana</creator><creator>Simon, Carlos</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130417</creationdate><title>Defining the genomic signature of totipotency and pluripotency during early human development</title><author>Galan, Amparo ; Diaz-Gimeno, Patricia ; Poo, Maria Eugenia ; Valbuena, Diana ; Sanchez, Eva ; Ruiz, Veronica ; Dopazo, Joaquin ; Montaner, David ; Conesa, Ana ; Simon, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e796668db54c0af618ceeb404d1d95f1a476474f17bf0c63a85fdfa3c5859dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioinformatics</topic><topic>Biology</topic><topic>Blastocyst Inner Cell Mass - cytology</topic><topic>Blastocyst Inner Cell Mass - metabolism</topic><topic>Blastocysts</topic><topic>Blastomeres</topic><topic>Blastomeres - cytology</topic><topic>Blastomeres - metabolism</topic><topic>Cell culture</topic><topic>Cell Differentiation - genetics</topic><topic>Comparative analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Embryo cells</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryos</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Implantation</topic><topic>Molecular Sequence Annotation</topic><topic>Ontology</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Principal components analysis</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Totipotent Stem Cells - cytology</topic><topic>Totipotent Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galan, Amparo</creatorcontrib><creatorcontrib>Diaz-Gimeno, Patricia</creatorcontrib><creatorcontrib>Poo, Maria Eugenia</creatorcontrib><creatorcontrib>Valbuena, Diana</creatorcontrib><creatorcontrib>Sanchez, Eva</creatorcontrib><creatorcontrib>Ruiz, Veronica</creatorcontrib><creatorcontrib>Dopazo, Joaquin</creatorcontrib><creatorcontrib>Montaner, David</creatorcontrib><creatorcontrib>Conesa, Ana</creatorcontrib><creatorcontrib>Simon, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galan, Amparo</au><au>Diaz-Gimeno, Patricia</au><au>Poo, Maria Eugenia</au><au>Valbuena, Diana</au><au>Sanchez, Eva</au><au>Ruiz, Veronica</au><au>Dopazo, Joaquin</au><au>Montaner, David</au><au>Conesa, Ana</au><au>Simon, Carlos</au><au>Xu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the genomic signature of totipotency and pluripotency during early human development</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-17</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e62135</spage><epage>e62135</epage><pages>e62135-e62135</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23614026</pmid><doi>10.1371/journal.pone.0062135</doi><tpages>e62135</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-04, Vol.8 (4), p.e62135-e62135 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1344162532 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bioinformatics Biology Blastocyst Inner Cell Mass - cytology Blastocyst Inner Cell Mass - metabolism Blastocysts Blastomeres Blastomeres - cytology Blastomeres - metabolism Cell culture Cell Differentiation - genetics Comparative analysis Deoxyribonucleic acid DNA DNA methylation Embryo cells Embryogenesis Embryonic development Embryonic Development - genetics Embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Embryos Functional analysis Gene expression Gene Expression Profiling Gene Regulatory Networks - genetics Genes Genome, Human - genetics Genomes Genomics Humans Implantation Molecular Sequence Annotation Ontology Pluripotency Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Principal components analysis Signaling Stem cells Studies Surgical implants Totipotent Stem Cells - cytology Totipotent Stem Cells - metabolism |
title | Defining the genomic signature of totipotency and pluripotency during early human development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20genomic%20signature%20of%20totipotency%20and%20pluripotency%20during%20early%20human%20development&rft.jtitle=PloS%20one&rft.au=Galan,%20Amparo&rft.date=2013-04-17&rft.volume=8&rft.issue=4&rft.spage=e62135&rft.epage=e62135&rft.pages=e62135-e62135&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062135&rft_dat=%3Cgale_plos_%3EA478243096%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1344162532&rft_id=info:pmid/23614026&rft_galeid=A478243096&rft_doaj_id=oai_doaj_org_article_0d0e73180e0e49bc948a228200fa8b93&rfr_iscdi=true |