The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans
In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-04, Vol.8 (4), p.e62258-e62258 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e62258 |
---|---|
container_issue | 4 |
container_start_page | e62258 |
container_title | PloS one |
container_volume | 8 |
creator | Laviolette, Louis Niérat, Marie-Cécile Hudson, Anna L Raux, Mathieu Allard, Etienne Similowski, Thomas |
description | In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe").
The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA.
cTBS reduced the amplitude of DiMEPs from 327.5 ± 159.8 µV at baseline to 243.3 ± 118.7 µV, 217.8 ± 102.9 µV and 240.6 ± 123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7 ± 96.5 µV at baseline to 270.7 ± 135.4 µV at post 3 (F = 4.844, p = 0.009).
The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe. |
doi_str_mv | 10.1371/journal.pone.0062258 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1344056064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478258361</galeid><doaj_id>oai_doaj_org_article_8e5b7cfa22c1452792710338a2efdd8c</doaj_id><sourcerecordid>A478258361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-1b935b138079b5120eabc55e97e2b761d0c39eb0b81c5564b65f60a32bdcc52f3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBYQkJw2MUfsZNckKqKj5UqVYLC1XKcycZLYgc7gfbOD8fZptUG9YBySDJ-3teeGU-SPCd4TVhG3u3c6K1q172zsMZYUMrzB8kxKRhdCYrZw4Pvo-RJCDuMOcuFeJwcUSZIilNxnPy5bACFse9b6MAOyl-jzg3OI-VBIbgCPwSk0OCs0fFXm0HF1WtkbN2OYDUgZ5F2fjDahd7EA6Heux3owTgbog71jYdJPNlaGP0UNhap3-oHoGbslA1Pk0e1agM8m98nybePHy7PPq_OLz5tzk7PVzrj-bAiZcF4SViOs6LkhGJQpeYcigxomQlSYc0KKHGZkxgWaSl4LbBitKy05rRmJ8nLG9--dUHOBQySsDTFXGCRRmJzQ1RO7WTvTRcrIp0ych9wfivVlGsLMgdeZrpWlGqScpoVNCOYsVxRqKsq19Hr_bzbWHZQ6Vher9qF6XLFmkZu3S_JBM0ZK6LBm9nAu58jhEF2JmhoW2XBjftzC0KyjGQRffUPen92M7VVMYHYQhf31ZOpPE2zPF6geC8itb6Hik8FXeyyhdrE-ELwdiGIzABXw1aNIcjN1y__z158X7KvD9gGVDs0wbXj_motwfQG1N6F4KG-KzLBchqW22rIaVjkPCxR9uKwQXei2-lgfwFirRHe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344056064</pqid></control><display><type>article</type><title>The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans</title><source>MEDLINE</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Laviolette, Louis ; Niérat, Marie-Cécile ; Hudson, Anna L ; Raux, Mathieu ; Allard, Etienne ; Similowski, Thomas</creator><contributor>Yang, Isaac</contributor><creatorcontrib>Laviolette, Louis ; Niérat, Marie-Cécile ; Hudson, Anna L ; Raux, Mathieu ; Allard, Etienne ; Similowski, Thomas ; Yang, Isaac</creatorcontrib><description>In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe").
The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA.
cTBS reduced the amplitude of DiMEPs from 327.5 ± 159.8 µV at baseline to 243.3 ± 118.7 µV, 217.8 ± 102.9 µV and 240.6 ± 123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7 ± 96.5 µV at baseline to 270.7 ± 135.4 µV at post 3 (F = 4.844, p = 0.009).
The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0062258</identifier><identifier>PMID: 23614046</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Breathing ; Conditioning ; Cortex ; Cortex (motor) ; Diaphragm ; Diaphragm (anatomy) ; Electrodes ; Evoked Potentials, Motor - physiology ; Evoked response (psychophysiology) ; Humans ; Magnetic fields ; Medicine ; Motor Cortex - physiology ; Motor neurons ; Motor Neurons - cytology ; Motor Neurons - metabolism ; Outflow ; Physiology ; Pyramidal tracts ; Respiration ; Sleep and wakefulness ; Supplementary motor area ; Transcranial Magnetic Stimulation ; Ventilation ; Wakefulness ; Wakefulness - physiology</subject><ispartof>PloS one, 2013-04, Vol.8 (4), p.e62258-e62258</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Laviolette, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Laviolette, et al 2013 Laviolette, et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-1b935b138079b5120eabc55e97e2b761d0c39eb0b81c5564b65f60a32bdcc52f3</citedby><cites>FETCH-LOGICAL-c758t-1b935b138079b5120eabc55e97e2b761d0c39eb0b81c5564b65f60a32bdcc52f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628339/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628339/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23614046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yang, Isaac</contributor><creatorcontrib>Laviolette, Louis</creatorcontrib><creatorcontrib>Niérat, Marie-Cécile</creatorcontrib><creatorcontrib>Hudson, Anna L</creatorcontrib><creatorcontrib>Raux, Mathieu</creatorcontrib><creatorcontrib>Allard, Etienne</creatorcontrib><creatorcontrib>Similowski, Thomas</creatorcontrib><title>The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe").
The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA.
cTBS reduced the amplitude of DiMEPs from 327.5 ± 159.8 µV at baseline to 243.3 ± 118.7 µV, 217.8 ± 102.9 µV and 240.6 ± 123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7 ± 96.5 µV at baseline to 270.7 ± 135.4 µV at post 3 (F = 4.844, p = 0.009).
The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.</description><subject>Biology</subject><subject>Breathing</subject><subject>Conditioning</subject><subject>Cortex</subject><subject>Cortex (motor)</subject><subject>Diaphragm</subject><subject>Diaphragm (anatomy)</subject><subject>Electrodes</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Evoked response (psychophysiology)</subject><subject>Humans</subject><subject>Magnetic fields</subject><subject>Medicine</subject><subject>Motor Cortex - physiology</subject><subject>Motor neurons</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - metabolism</subject><subject>Outflow</subject><subject>Physiology</subject><subject>Pyramidal tracts</subject><subject>Respiration</subject><subject>Sleep and wakefulness</subject><subject>Supplementary motor area</subject><subject>Transcranial Magnetic Stimulation</subject><subject>Ventilation</subject><subject>Wakefulness</subject><subject>Wakefulness - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBYQkJw2MUfsZNckKqKj5UqVYLC1XKcycZLYgc7gfbOD8fZptUG9YBySDJ-3teeGU-SPCd4TVhG3u3c6K1q172zsMZYUMrzB8kxKRhdCYrZw4Pvo-RJCDuMOcuFeJwcUSZIilNxnPy5bACFse9b6MAOyl-jzg3OI-VBIbgCPwSk0OCs0fFXm0HF1WtkbN2OYDUgZ5F2fjDahd7EA6Heux3owTgbog71jYdJPNlaGP0UNhap3-oHoGbslA1Pk0e1agM8m98nybePHy7PPq_OLz5tzk7PVzrj-bAiZcF4SViOs6LkhGJQpeYcigxomQlSYc0KKHGZkxgWaSl4LbBitKy05rRmJ8nLG9--dUHOBQySsDTFXGCRRmJzQ1RO7WTvTRcrIp0ych9wfivVlGsLMgdeZrpWlGqScpoVNCOYsVxRqKsq19Hr_bzbWHZQ6Vher9qF6XLFmkZu3S_JBM0ZK6LBm9nAu58jhEF2JmhoW2XBjftzC0KyjGQRffUPen92M7VVMYHYQhf31ZOpPE2zPF6geC8itb6Hik8FXeyyhdrE-ELwdiGIzABXw1aNIcjN1y__z158X7KvD9gGVDs0wbXj_motwfQG1N6F4KG-KzLBchqW22rIaVjkPCxR9uKwQXei2-lgfwFirRHe</recordid><startdate>20130416</startdate><enddate>20130416</enddate><creator>Laviolette, Louis</creator><creator>Niérat, Marie-Cécile</creator><creator>Hudson, Anna L</creator><creator>Raux, Mathieu</creator><creator>Allard, Etienne</creator><creator>Similowski, Thomas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130416</creationdate><title>The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans</title><author>Laviolette, Louis ; Niérat, Marie-Cécile ; Hudson, Anna L ; Raux, Mathieu ; Allard, Etienne ; Similowski, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-1b935b138079b5120eabc55e97e2b761d0c39eb0b81c5564b65f60a32bdcc52f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biology</topic><topic>Breathing</topic><topic>Conditioning</topic><topic>Cortex</topic><topic>Cortex (motor)</topic><topic>Diaphragm</topic><topic>Diaphragm (anatomy)</topic><topic>Electrodes</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Evoked response (psychophysiology)</topic><topic>Humans</topic><topic>Magnetic fields</topic><topic>Medicine</topic><topic>Motor Cortex - physiology</topic><topic>Motor neurons</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - metabolism</topic><topic>Outflow</topic><topic>Physiology</topic><topic>Pyramidal tracts</topic><topic>Respiration</topic><topic>Sleep and wakefulness</topic><topic>Supplementary motor area</topic><topic>Transcranial Magnetic Stimulation</topic><topic>Ventilation</topic><topic>Wakefulness</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laviolette, Louis</creatorcontrib><creatorcontrib>Niérat, Marie-Cécile</creatorcontrib><creatorcontrib>Hudson, Anna L</creatorcontrib><creatorcontrib>Raux, Mathieu</creatorcontrib><creatorcontrib>Allard, Etienne</creatorcontrib><creatorcontrib>Similowski, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laviolette, Louis</au><au>Niérat, Marie-Cécile</au><au>Hudson, Anna L</au><au>Raux, Mathieu</au><au>Allard, Etienne</au><au>Similowski, Thomas</au><au>Yang, Isaac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-04-16</date><risdate>2013</risdate><volume>8</volume><issue>4</issue><spage>e62258</spage><epage>e62258</epage><pages>e62258-e62258</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe").
The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA.
cTBS reduced the amplitude of DiMEPs from 327.5 ± 159.8 µV at baseline to 243.3 ± 118.7 µV, 217.8 ± 102.9 µV and 240.6 ± 123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7 ± 96.5 µV at baseline to 270.7 ± 135.4 µV at post 3 (F = 4.844, p = 0.009).
The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23614046</pmid><doi>10.1371/journal.pone.0062258</doi><tpages>e62258</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-04, Vol.8 (4), p.e62258-e62258 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1344056064 |
source | MEDLINE; Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biology Breathing Conditioning Cortex Cortex (motor) Diaphragm Diaphragm (anatomy) Electrodes Evoked Potentials, Motor - physiology Evoked response (psychophysiology) Humans Magnetic fields Medicine Motor Cortex - physiology Motor neurons Motor Neurons - cytology Motor Neurons - metabolism Outflow Physiology Pyramidal tracts Respiration Sleep and wakefulness Supplementary motor area Transcranial Magnetic Stimulation Ventilation Wakefulness Wakefulness - physiology |
title | The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20supplementary%20motor%20area%20exerts%20a%20tonic%20excitatory%20influence%20on%20corticospinal%20projections%20to%20phrenic%20motoneurons%20in%20awake%20humans&rft.jtitle=PloS%20one&rft.au=Laviolette,%20Louis&rft.date=2013-04-16&rft.volume=8&rft.issue=4&rft.spage=e62258&rft.epage=e62258&rft.pages=e62258-e62258&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0062258&rft_dat=%3Cgale_plos_%3EA478258361%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1344056064&rft_id=info:pmid/23614046&rft_galeid=A478258361&rft_doaj_id=oai_doaj_org_article_8e5b7cfa22c1452792710338a2efdd8c&rfr_iscdi=true |