Frontal GABA levels change during working memory

Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-04, Vol.7 (4), p.e31933
Hauptverfasser: Michels, Lars, Martin, Ernst, Klaver, Peter, Edden, Richard, Zelaya, Fernando, Lythgoe, David J, Lüchinger, Rafael, Brandeis, Daniel, O'Gorman, Ruth L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e31933
container_title PloS one
container_volume 7
creator Michels, Lars
Martin, Ernst
Klaver, Peter
Edden, Richard
Zelaya, Fernando
Lythgoe, David J
Lüchinger, Rafael
Brandeis, Daniel
O'Gorman, Ruth L
description Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing.
doi_str_mv 10.1371/journal.pone.0031933
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1340946714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477149984</galeid><doaj_id>oai_doaj_org_article_68d052d5552b4500a3675e508f04df97</doaj_id><sourcerecordid>A477149984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c724t-6587627d8b7b83052cf05f04c9be6817e8e1ead4a7386e89e8f9cf5fdc200aeb3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiPExEbhHyCohATjosWO468bpDKxUWnSJL5uLcc5SVOcuNjJYP8eh2ZTgyaEfHEs-zmvj_36JMkzjJaYcPx263rfarvcuRaWCBEsCXmQnMSQLliKyMOD-XHyOIQtQpQIxh4lx2maCYpTcZKgc-_aTtv5xer9am7hGmyYm41uK5gXva_bav7T-e9DbKBx_uZJclRqG-DpGGfJ1_MPX84-Li6vLtZnq8uF4WnWLRgVnKW8EDnPBUE0NSWiJcqMzIEJzEEABl1kmseSQEgQpTQlLQuTIqQhJ7PkxV53Z11Q42WDwiRDMmMcZ5FY74nC6a3a-brR_kY5Xas_C85XSvuuNhYUE0UsoaCUpnlG4wGEcQoUiVhRUUoetd6Np_V5A4WBtvPaTkSnO229UZW7VoRgztgg8HoU8O5HD6FTTR0MWKtbcH1QUhKMUhkdmSWn_ySjLRTJaBWN6Mu_0PvfYaQqHa9at6WLFZpBVK0yHgkpxUAt76HiKKCpTfxDZR3XJwlvJgmR6eBXV-k-BLX-_On_2atvU_bVAbsBbbtNcLbvateGKZjtQeNdCB7KOzswUkML3L6GGlpAjS0Q054fWnmXdPvnyW_Unv3-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1340946714</pqid></control><display><type>article</type><title>Frontal GABA levels change during working memory</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Michels, Lars ; Martin, Ernst ; Klaver, Peter ; Edden, Richard ; Zelaya, Fernando ; Lythgoe, David J ; Lüchinger, Rafael ; Brandeis, Daniel ; O'Gorman, Ruth L</creator><creatorcontrib>Michels, Lars ; Martin, Ernst ; Klaver, Peter ; Edden, Richard ; Zelaya, Fernando ; Lythgoe, David J ; Lüchinger, Rafael ; Brandeis, Daniel ; O'Gorman, Ruth L</creatorcontrib><description>Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0031933</identifier><identifier>PMID: 22485128</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Analysis of Variance ; Attention Deficit Hyperactivity Disorder ; Biology ; Blood ; Brain research ; Child &amp; adolescent psychiatry ; Children &amp; youth ; Cognition ; Cognition &amp; reasoning ; Cognitive ability ; Cortex (frontal) ; Cortex (prefrontal) ; Energy consumption ; Female ; GABA ; gamma -Aminobutyric acid ; gamma-Aminobutyric Acid - metabolism ; Glutamate ; Glutamic acid ; Glutamic Acid - metabolism ; Glutamine ; Glutamine - metabolism ; Hemodynamics ; Hospitals ; Humans ; Information processing ; Inhibition (psychology) ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; Male ; Matching-to-sample ; Medical imaging ; Medical research ; Medicine ; Memory ; Memory, Short-Term ; Mental task performance ; Metabolism ; Metabolites ; Neurobiology ; Neurochemistry ; Neuroimaging ; Neurology ; Neurophysiology ; Neurosciences ; Neurotransmitter Agents - metabolism ; Neurotransmitters ; NMR ; Nuclear magnetic resonance ; Perfusion ; Physiology ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Reaction Time ; Reaction time task ; Short term memory ; Spectrum analysis ; Studies ; γ-Aminobutyric acid</subject><ispartof>PloS one, 2012-04, Vol.7 (4), p.e31933</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Michels et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Michels et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c724t-6587627d8b7b83052cf05f04c9be6817e8e1ead4a7386e89e8f9cf5fdc200aeb3</citedby><cites>FETCH-LOGICAL-c724t-6587627d8b7b83052cf05f04c9be6817e8e1ead4a7386e89e8f9cf5fdc200aeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317667/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317667/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22485128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michels, Lars</creatorcontrib><creatorcontrib>Martin, Ernst</creatorcontrib><creatorcontrib>Klaver, Peter</creatorcontrib><creatorcontrib>Edden, Richard</creatorcontrib><creatorcontrib>Zelaya, Fernando</creatorcontrib><creatorcontrib>Lythgoe, David J</creatorcontrib><creatorcontrib>Lüchinger, Rafael</creatorcontrib><creatorcontrib>Brandeis, Daniel</creatorcontrib><creatorcontrib>O'Gorman, Ruth L</creatorcontrib><title>Frontal GABA levels change during working memory</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing.</description><subject>Adult</subject><subject>Analysis of Variance</subject><subject>Attention Deficit Hyperactivity Disorder</subject><subject>Biology</subject><subject>Blood</subject><subject>Brain research</subject><subject>Child &amp; adolescent psychiatry</subject><subject>Children &amp; youth</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Cortex (frontal)</subject><subject>Cortex (prefrontal)</subject><subject>Energy consumption</subject><subject>Female</subject><subject>GABA</subject><subject>gamma -Aminobutyric acid</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamate</subject><subject>Glutamic acid</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamine</subject><subject>Glutamine - metabolism</subject><subject>Hemodynamics</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Information processing</subject><subject>Inhibition (psychology)</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Matching-to-sample</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Memory</subject><subject>Memory, Short-Term</subject><subject>Mental task performance</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Neurobiology</subject><subject>Neurochemistry</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitters</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Perfusion</subject><subject>Physiology</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Reaction Time</subject><subject>Reaction time task</subject><subject>Short term memory</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>γ-Aminobutyric acid</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiPExEbhHyCohATjosWO468bpDKxUWnSJL5uLcc5SVOcuNjJYP8eh2ZTgyaEfHEs-zmvj_36JMkzjJaYcPx263rfarvcuRaWCBEsCXmQnMSQLliKyMOD-XHyOIQtQpQIxh4lx2maCYpTcZKgc-_aTtv5xer9am7hGmyYm41uK5gXva_bav7T-e9DbKBx_uZJclRqG-DpGGfJ1_MPX84-Li6vLtZnq8uF4WnWLRgVnKW8EDnPBUE0NSWiJcqMzIEJzEEABl1kmseSQEgQpTQlLQuTIqQhJ7PkxV53Z11Q42WDwiRDMmMcZ5FY74nC6a3a-brR_kY5Xas_C85XSvuuNhYUE0UsoaCUpnlG4wGEcQoUiVhRUUoetd6Np_V5A4WBtvPaTkSnO229UZW7VoRgztgg8HoU8O5HD6FTTR0MWKtbcH1QUhKMUhkdmSWn_ySjLRTJaBWN6Mu_0PvfYaQqHa9at6WLFZpBVK0yHgkpxUAt76HiKKCpTfxDZR3XJwlvJgmR6eBXV-k-BLX-_On_2atvU_bVAbsBbbtNcLbvateGKZjtQeNdCB7KOzswUkML3L6GGlpAjS0Q054fWnmXdPvnyW_Unv3-</recordid><startdate>20120402</startdate><enddate>20120402</enddate><creator>Michels, Lars</creator><creator>Martin, Ernst</creator><creator>Klaver, Peter</creator><creator>Edden, Richard</creator><creator>Zelaya, Fernando</creator><creator>Lythgoe, David J</creator><creator>Lüchinger, Rafael</creator><creator>Brandeis, Daniel</creator><creator>O'Gorman, Ruth L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120402</creationdate><title>Frontal GABA levels change during working memory</title><author>Michels, Lars ; Martin, Ernst ; Klaver, Peter ; Edden, Richard ; Zelaya, Fernando ; Lythgoe, David J ; Lüchinger, Rafael ; Brandeis, Daniel ; O'Gorman, Ruth L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c724t-6587627d8b7b83052cf05f04c9be6817e8e1ead4a7386e89e8f9cf5fdc200aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Analysis of Variance</topic><topic>Attention Deficit Hyperactivity Disorder</topic><topic>Biology</topic><topic>Blood</topic><topic>Brain research</topic><topic>Child &amp; adolescent psychiatry</topic><topic>Children &amp; youth</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Cortex (frontal)</topic><topic>Cortex (prefrontal)</topic><topic>Energy consumption</topic><topic>Female</topic><topic>GABA</topic><topic>gamma -Aminobutyric acid</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamate</topic><topic>Glutamic acid</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamine</topic><topic>Glutamine - metabolism</topic><topic>Hemodynamics</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Information processing</topic><topic>Inhibition (psychology)</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Matching-to-sample</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Memory</topic><topic>Memory, Short-Term</topic><topic>Mental task performance</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Neurobiology</topic><topic>Neurochemistry</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitters</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Perfusion</topic><topic>Physiology</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Reaction Time</topic><topic>Reaction time task</topic><topic>Short term memory</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michels, Lars</creatorcontrib><creatorcontrib>Martin, Ernst</creatorcontrib><creatorcontrib>Klaver, Peter</creatorcontrib><creatorcontrib>Edden, Richard</creatorcontrib><creatorcontrib>Zelaya, Fernando</creatorcontrib><creatorcontrib>Lythgoe, David J</creatorcontrib><creatorcontrib>Lüchinger, Rafael</creatorcontrib><creatorcontrib>Brandeis, Daniel</creatorcontrib><creatorcontrib>O'Gorman, Ruth L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michels, Lars</au><au>Martin, Ernst</au><au>Klaver, Peter</au><au>Edden, Richard</au><au>Zelaya, Fernando</au><au>Lythgoe, David J</au><au>Lüchinger, Rafael</au><au>Brandeis, Daniel</au><au>O'Gorman, Ruth L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frontal GABA levels change during working memory</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-04-02</date><risdate>2012</risdate><volume>7</volume><issue>4</issue><spage>e31933</spage><pages>e31933-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22485128</pmid><doi>10.1371/journal.pone.0031933</doi><tpages>e31933</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-04, Vol.7 (4), p.e31933
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1340946714
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adult
Analysis of Variance
Attention Deficit Hyperactivity Disorder
Biology
Blood
Brain research
Child & adolescent psychiatry
Children & youth
Cognition
Cognition & reasoning
Cognitive ability
Cortex (frontal)
Cortex (prefrontal)
Energy consumption
Female
GABA
gamma -Aminobutyric acid
gamma-Aminobutyric Acid - metabolism
Glutamate
Glutamic acid
Glutamic Acid - metabolism
Glutamine
Glutamine - metabolism
Hemodynamics
Hospitals
Humans
Information processing
Inhibition (psychology)
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Male
Matching-to-sample
Medical imaging
Medical research
Medicine
Memory
Memory, Short-Term
Mental task performance
Metabolism
Metabolites
Neurobiology
Neurochemistry
Neuroimaging
Neurology
Neurophysiology
Neurosciences
Neurotransmitter Agents - metabolism
Neurotransmitters
NMR
Nuclear magnetic resonance
Perfusion
Physiology
Prefrontal cortex
Prefrontal Cortex - metabolism
Reaction Time
Reaction time task
Short term memory
Spectrum analysis
Studies
γ-Aminobutyric acid
title Frontal GABA levels change during working memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frontal%20GABA%20levels%20change%20during%20working%20memory&rft.jtitle=PloS%20one&rft.au=Michels,%20Lars&rft.date=2012-04-02&rft.volume=7&rft.issue=4&rft.spage=e31933&rft.pages=e31933-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0031933&rft_dat=%3Cgale_plos_%3EA477149984%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1340946714&rft_id=info:pmid/22485128&rft_galeid=A477149984&rft_doaj_id=oai_doaj_org_article_68d052d5552b4500a3675e508f04df97&rfr_iscdi=true