Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDAC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2012-12, Vol.7 (12), p.e50545-e50545
Hauptverfasser: Sol, Eri Maria, Wagner, Sebastian A, Weinert, Brian T, Kumar, Amit, Kim, Hyun-Seok, Deng, Chu-Xia, Choudhary, Chunaram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e50545
container_issue 12
container_start_page e50545
container_title PloS one
container_volume 7
creator Sol, Eri Maria
Wagner, Sebastian A
Weinert, Brian T
Kumar, Amit
Kim, Hyun-Seok
Deng, Chu-Xia
Choudhary, Chunaram
description Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases.
doi_str_mv 10.1371/journal.pone.0050545
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1339064143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477084182</galeid><doaj_id>oai_doaj_org_article_06ab66031bf44bf5b802f8bc2d914fb9</doaj_id><sourcerecordid>A477084182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-40bc8c9a6adcf2d05d43d57f10a1c372f580c96e9e8e2deb155f3f26e05562bc3</originalsourceid><addsrcrecordid>eNqNk9uK2zAQhk1p6W63fYPSGgqlvUiqgyXbN4Vl6SGwsKWnWyFLo0TBtrKSHJq3r5J4l7jsRdGFxfj7f41GM1n2EqM5piX-sHaD72U737ge5ggxxAr2KDvHNSUzThB9fLI_y56FsE4QrTh_mp0RSiinZXmedd-8i-A6q3LbbyFEu5TRuj7kzuTtLtgecqkg7tpDOLca-mjNLtd2Cz5AHoYmRC8jHBSdjU6tXK-9lW2uYZTuOesjfZ49MbIN8GL8XmS_Pn_6efV1dn3zZXF1eT1TJavirECNqlQtudTKEI2YLqhmpcFIYkVLYliFVM2hhgqIhgYzZqghHBBjnDSKXmSvj76b1gUxVioITGmNeIELmojFkdBOrsXG2076nXDSikPA-aWQPlrVgkBcNpwjihtTFI1hTYWIqRpFdI0L09TJ6-N42tB0oFWqkJftxHT6p7crsXRbQRkuOULJ4N1o4N3tkB5BdDYoaFvZgxtS3iTlzWpyyPvNP-jDtxuppUwXsL1x6Vy1NxWXRVmiqsAVSdT8ASotDakfUlsZm-ITwfuJIDER_sSlHEIQix_f_5-9-T1l356wK5BtXAXXDodGnILFEVTeheDB3BcZI7GfirtqiP1UiHEqkuzV6QPdi-7GgP4FnDoKGg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1339064143</pqid></control><display><type>article</type><title>Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sol, Eri Maria ; Wagner, Sebastian A ; Weinert, Brian T ; Kumar, Amit ; Kim, Hyun-Seok ; Deng, Chu-Xia ; Choudhary, Chunaram</creator><creatorcontrib>Sol, Eri Maria ; Wagner, Sebastian A ; Weinert, Brian T ; Kumar, Amit ; Kim, Hyun-Seok ; Deng, Chu-Xia ; Choudhary, Chunaram</creatorcontrib><description>Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0050545</identifier><identifier>PMID: 23236377</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Acetates ; Acetylation ; Amino acids ; Animals ; Biology ; Cell Line ; Cells (Biology) ; Chromatin ; Diabetes ; Embryo fibroblasts ; Embryos ; Fatty acids ; Fibroblasts ; Fibroblasts - metabolism ; Genomes ; Health sciences ; Humans ; Investigations ; Kidney diseases ; Lysine ; Lysine - genetics ; Lysine - metabolism ; Mammals ; Mass spectrometry ; Metabolic pathways ; Metabolism ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Peptides ; Phosphorylation ; Physiological aspects ; Physiology ; Post-translational modifications ; Proteins ; Proteomics ; Regulation ; Scientific imaging ; Sirtuin 3 - genetics ; Sirtuin 3 - metabolism ; Substrates ; Tricarboxylic acid cycle</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e50545-e50545</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Sol et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Sol et al 2012 Sol et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-40bc8c9a6adcf2d05d43d57f10a1c372f580c96e9e8e2deb155f3f26e05562bc3</citedby><cites>FETCH-LOGICAL-c758t-40bc8c9a6adcf2d05d43d57f10a1c372f580c96e9e8e2deb155f3f26e05562bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23236377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sol, Eri Maria</creatorcontrib><creatorcontrib>Wagner, Sebastian A</creatorcontrib><creatorcontrib>Weinert, Brian T</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kim, Hyun-Seok</creatorcontrib><creatorcontrib>Deng, Chu-Xia</creatorcontrib><creatorcontrib>Choudhary, Chunaram</creatorcontrib><title>Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases.</description><subject>Ablation</subject><subject>Acetates</subject><subject>Acetylation</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biology</subject><subject>Cell Line</subject><subject>Cells (Biology)</subject><subject>Chromatin</subject><subject>Diabetes</subject><subject>Embryo fibroblasts</subject><subject>Embryos</subject><subject>Fatty acids</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Genomes</subject><subject>Health sciences</subject><subject>Humans</subject><subject>Investigations</subject><subject>Kidney diseases</subject><subject>Lysine</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>Mammals</subject><subject>Mass spectrometry</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Post-translational modifications</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Regulation</subject><subject>Scientific imaging</subject><subject>Sirtuin 3 - genetics</subject><subject>Sirtuin 3 - metabolism</subject><subject>Substrates</subject><subject>Tricarboxylic acid cycle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uK2zAQhk1p6W63fYPSGgqlvUiqgyXbN4Vl6SGwsKWnWyFLo0TBtrKSHJq3r5J4l7jsRdGFxfj7f41GM1n2EqM5piX-sHaD72U737ge5ggxxAr2KDvHNSUzThB9fLI_y56FsE4QrTh_mp0RSiinZXmedd-8i-A6q3LbbyFEu5TRuj7kzuTtLtgecqkg7tpDOLca-mjNLtd2Cz5AHoYmRC8jHBSdjU6tXK-9lW2uYZTuOesjfZ49MbIN8GL8XmS_Pn_6efV1dn3zZXF1eT1TJavirECNqlQtudTKEI2YLqhmpcFIYkVLYliFVM2hhgqIhgYzZqghHBBjnDSKXmSvj76b1gUxVioITGmNeIELmojFkdBOrsXG2076nXDSikPA-aWQPlrVgkBcNpwjihtTFI1hTYWIqRpFdI0L09TJ6-N42tB0oFWqkJftxHT6p7crsXRbQRkuOULJ4N1o4N3tkB5BdDYoaFvZgxtS3iTlzWpyyPvNP-jDtxuppUwXsL1x6Vy1NxWXRVmiqsAVSdT8ASotDakfUlsZm-ITwfuJIDER_sSlHEIQix_f_5-9-T1l356wK5BtXAXXDodGnILFEVTeheDB3BcZI7GfirtqiP1UiHEqkuzV6QPdi-7GgP4FnDoKGg</recordid><startdate>20121207</startdate><enddate>20121207</enddate><creator>Sol, Eri Maria</creator><creator>Wagner, Sebastian A</creator><creator>Weinert, Brian T</creator><creator>Kumar, Amit</creator><creator>Kim, Hyun-Seok</creator><creator>Deng, Chu-Xia</creator><creator>Choudhary, Chunaram</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121207</creationdate><title>Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3</title><author>Sol, Eri Maria ; Wagner, Sebastian A ; Weinert, Brian T ; Kumar, Amit ; Kim, Hyun-Seok ; Deng, Chu-Xia ; Choudhary, Chunaram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-40bc8c9a6adcf2d05d43d57f10a1c372f580c96e9e8e2deb155f3f26e05562bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ablation</topic><topic>Acetates</topic><topic>Acetylation</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biology</topic><topic>Cell Line</topic><topic>Cells (Biology)</topic><topic>Chromatin</topic><topic>Diabetes</topic><topic>Embryo fibroblasts</topic><topic>Embryos</topic><topic>Fatty acids</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Genomes</topic><topic>Health sciences</topic><topic>Humans</topic><topic>Investigations</topic><topic>Kidney diseases</topic><topic>Lysine</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>Mammals</topic><topic>Mass spectrometry</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Post-translational modifications</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Regulation</topic><topic>Scientific imaging</topic><topic>Sirtuin 3 - genetics</topic><topic>Sirtuin 3 - metabolism</topic><topic>Substrates</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sol, Eri Maria</creatorcontrib><creatorcontrib>Wagner, Sebastian A</creatorcontrib><creatorcontrib>Weinert, Brian T</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kim, Hyun-Seok</creatorcontrib><creatorcontrib>Deng, Chu-Xia</creatorcontrib><creatorcontrib>Choudhary, Chunaram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sol, Eri Maria</au><au>Wagner, Sebastian A</au><au>Weinert, Brian T</au><au>Kumar, Amit</au><au>Kim, Hyun-Seok</au><au>Deng, Chu-Xia</au><au>Choudhary, Chunaram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-07</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e50545</spage><epage>e50545</epage><pages>e50545-e50545</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23236377</pmid><doi>10.1371/journal.pone.0050545</doi><tpages>e50545</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-12, Vol.7 (12), p.e50545-e50545
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1339064143
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Ablation
Acetates
Acetylation
Amino acids
Animals
Biology
Cell Line
Cells (Biology)
Chromatin
Diabetes
Embryo fibroblasts
Embryos
Fatty acids
Fibroblasts
Fibroblasts - metabolism
Genomes
Health sciences
Humans
Investigations
Kidney diseases
Lysine
Lysine - genetics
Lysine - metabolism
Mammals
Mass spectrometry
Metabolic pathways
Metabolism
Mice
Mice, Knockout
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Peptides
Phosphorylation
Physiological aspects
Physiology
Post-translational modifications
Proteins
Proteomics
Regulation
Scientific imaging
Sirtuin 3 - genetics
Sirtuin 3 - metabolism
Substrates
Tricarboxylic acid cycle
title Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20investigations%20of%20lysine%20acetylation%20identify%20diverse%20substrates%20of%20mitochondrial%20deacetylase%20sirt3&rft.jtitle=PloS%20one&rft.au=Sol,%20Eri%20Maria&rft.date=2012-12-07&rft.volume=7&rft.issue=12&rft.spage=e50545&rft.epage=e50545&rft.pages=e50545-e50545&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0050545&rft_dat=%3Cgale_plos_%3EA477084182%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1339064143&rft_id=info:pmid/23236377&rft_galeid=A477084182&rft_doaj_id=oai_doaj_org_article_06ab66031bf44bf5b802f8bc2d914fb9&rfr_iscdi=true